On the strong solution of 3D non-isothermal Navier-Stokes-Cahn-Hilliard equations

被引:0
|
作者
Zhao, Xiaopeng [1 ]
机构
[1] Northeastern Univ, Coll Sci, Shenyang 110004, Peoples R China
关键词
DIFFUSE INTERFACE MODEL; INCOMPRESSIBLE FLUIDS; SYSTEM; ATTRACTOR; FLOWS;
D O I
10.1063/5.0099260
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the global existence of strong solutions of a thermodynamically consistent diffuse interface model describing twophase flows of incompressible fluids in a non-isothermal setting. In the diffuse interface model, the evolution of the velocity u is ruled by the Navier-Stokes system, while the order parameter f representing the difference of the fluid concentration of the two fluids is assumed to satisfy a convective Cahn-Hilliard equation. The effects of the temperature are prescribed by a suitable form of heat equation. By using a refined pure energy method, we prove the existence of the global strong solution by assuming that ||u0|| H-2(3) + ||f0. ||(2) H-4|| +.||(2) H-3|| +.f20 - 1.2 L2 +..0. L1 is sufficiently small, and higher order derivatives can be arbitrarily large.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] On a non-isothermal incompressible Navier–Stokes–Allen–Cahn system
    Juliana Honda Lopes
    Gabriela Planas
    Monatshefte für Mathematik, 2021, 195 : 687 - 715
  • [22] Mixing rules and the Navier-Stokes-Cahn-Hilliard equations for compressible heat-conductive fluids
    Kotschote, Matthias
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (02): : 457 - 471
  • [23] Uniform regularity of the weak solution to higher-order Navier-Stokes-Cahn-Hilliard systems
    Pan, Jiaojiao
    Xing, Chao
    Luo, Hong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)
  • [24] Asymptotic stability of solutions for 1-D compressible Navier-Stokes-Cahn-Hilliard system
    Chen, Yazhou
    He, Qiaolin
    Mei, Ming
    Shi, Xiaoding
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (01) : 185 - 206
  • [25] Isogeometric Analysis of the Navier-Stokes-Cahn-Hilliard equations with application to incompressible two-phase flows
    Hosseini, Babak S.
    Turek, Stefan
    Moller, Matthias
    Palmes, Christian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 348 : 171 - 194
  • [26] On the weak solutions to a 3D stochastic Cahn–Hilliard–Navier–Stokes model
    Theodore Tachim Medjo
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [27] ATTRACTORS FOR THE NAVIER-STOKES-CAHN-HILLIARD SYSTEM WITH CHEMOTAXIS AND SINGULAR POTENTIAL IN 2D
    He, Jingning
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025,
  • [28] Nonlocal-to-local convergence rates for strong solutions to a Navier-Stokes-Cahn-Hilliard system with singular potential
    Hurm, Christoph
    Knopf, Patrik
    Poiatti, Andrea
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2024, 49 (09) : 832 - 871
  • [29] Thermodynamically consistent Navier-Stokes-Cahn-Hilliard models with mass transfer and chemotaxis
    Lam, Kei Fong
    Wu, Hao
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2018, 29 (04) : 595 - 644
  • [30] On a non-isothermal incompressible Navier-Stokes-Allen-Cahn system
    Honda Lopes, Juliana
    Planas, Gabriela
    MONATSHEFTE FUR MATHEMATIK, 2021, 195 (04): : 687 - 715