ATTRACTORS FOR THE NAVIER-STOKES-CAHN-HILLIARD SYSTEM WITH CHEMOTAXIS AND SINGULAR POTENTIAL IN 2D

被引:0
|
作者
He, Jingning [1 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes-Cahn-Hilliard system; chemotaxis; singular potential; attractors; EQUATIONS; BEHAVIOR;
D O I
10.3934/cpaa.2025050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the long-time behavior of solutions to a Navier-Stokes- Cahn-Hilliard system with chemotaxis effects and a solution-dependent mass source term. The fluid velocity v satisfies the Navier-Stokes system, the phase field variable phi satisfies a convective Cahn-Hilliard equation with a singular potential (e.g., the Flory-Huggins type), the nutrient density sigma satisfies an advection-diffusion-reaction. For the initial boundary value problem in 2D, we prove the existence of the global attractor in a suitable phase space. Furthermore, we obtain the existence of an exponential attractor, and we can thus deduce that the global attractor is of finite fractal dimension.
引用
收藏
页数:25
相关论文
共 50 条