ATTRACTORS FOR THE NAVIER-STOKES-CAHN-HILLIARD SYSTEM WITH CHEMOTAXIS AND SINGULAR POTENTIAL IN 2D

被引:0
|
作者
He, Jingning [1 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes-Cahn-Hilliard system; chemotaxis; singular potential; attractors; EQUATIONS; BEHAVIOR;
D O I
10.3934/cpaa.2025050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the long-time behavior of solutions to a Navier-Stokes- Cahn-Hilliard system with chemotaxis effects and a solution-dependent mass source term. The fluid velocity v satisfies the Navier-Stokes system, the phase field variable phi satisfies a convective Cahn-Hilliard equation with a singular potential (e.g., the Flory-Huggins type), the nutrient density sigma satisfies an advection-diffusion-reaction. For the initial boundary value problem in 2D, we prove the existence of the global attractor in a suitable phase space. Furthermore, we obtain the existence of an exponential attractor, and we can thus deduce that the global attractor is of finite fractal dimension.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Global and Trajectory Attractors for a Nonlocal Cahn–Hilliard–Navier–Stokes System
    Sergio Frigeri
    Maurizio Grasselli
    Journal of Dynamics and Differential Equations, 2012, 24 : 827 - 856
  • [22] On a Navier-Stokes-Cahn-Hilliard system for viscous incompressible two-phase flows with chemotaxis, active transport and reaction
    He, Jingning
    Wu, Hao
    MATHEMATISCHE ANNALEN, 2024, 389 (03) : 2193 - 2257
  • [23] Pullback exponential attractor for a Cahn-Hilliard-Navier-Stokes system in 2D
    Bosia, Stefano
    Gatti, Stefania
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2014, 11 (01) : 1 - 38
  • [24] The compressible Navier-Stokes-Cahn-Hilliard equations with dynamic boundary conditions
    Cherfils, Laurence
    Feireisl, Eduard
    Michalek, Martin
    Miranville, Alain
    Petcu, Madalina
    Prazak, Dalibor
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (14): : 2557 - 2584
  • [25] Global and Trajectory Attractors for a Nonlocal Cahn-Hilliard-Navier-Stokes System
    Frigeri, Sergio
    Grasselli, Maurizio
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2012, 24 (04) : 827 - 856
  • [26] ROBUST EXPONENTIAL ATTRACTORS FOR THE CAHN-HILLIARD-OONO-NAVIER-STOKES SYSTEM
    Nimi, Aymard Christbert
    Langa, Franck Davhys Reval
    Bissouesse, Aurdeli Juves Primpha
    Moukoko, Daniel
    Batchi, Macaire
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (09): : 2426 - 2451
  • [27] An Energy Dissipative Spatial Discretization for the Regularized Compressible Navier-Stokes-Cahn-Hilliard System of Equations
    Balashov, Vladislav
    Zlotnik, Alexander
    MATHEMATICAL MODELLING AND ANALYSIS, 2020, 25 (01) : 110 - 129
  • [28] THE NAVIER-STOKES-CAHN-HILLIARD EQUATIONS FOR MILDLY COMPRESSIBLE BINARY FLUID MIXTURES
    Giorgini, Andrea
    Temam, Roger
    Xuan-Truong Vu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (01): : 337 - 366
  • [29] Structure preserving finite element schemes for the Navier-Stokes-Cahn-Hilliard system with degenerate mobility
    Guillen-Gonzalez, Francisco
    Tierra, Giordano
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 172 : 181 - 201
  • [30] Asymptotic behavior of higher-order Navier-Stokes-Cahn-Hilliard systems
    Cherfils, Laurence
    Gatti, Stefania
    Miranville, Alain
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (12) : 4776 - 4794