Monte Carlo Integration Using Elliptic Curves

被引:0
|
作者
Mok, Chung Pang [1 ]
Zheng, Huimin [2 ,3 ,4 ]
机构
[1] Shanghai Inst Math & Interdisciplinary Sci, Shanghai 200438, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[3] Jiangsu Natl Ctr Appl Math, Nanjing 210023, Peoples R China
[4] Anhui Sci & Technol Univ, Coll Informat & Network Engn, Bengbu 233030, Anhui, Peoples R China
关键词
Pseudorandom vectors; Elliptic curves; Finite fields; Monte Carlo integration; Feynman-Kac formulas;
D O I
10.1007/s11401-025-0013-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors carry out numerical experiments with regard to the Monte Carlo integration method, using as input the pseudorandom vectors that are generated by the algorithm proposed in [Mok, C. P., Pseudorandom Vector Generation Using Elliptic Curves and Applications to Wiener Processes, Finite Fields and Their Applications, 85, 2023, 102129], which is based on the arithmetic theory of elliptic curves over finite fields. They consider integration in the following two cases: The case of Lebesgue measure on the unit hypercube [0, 1]d, and as well as the case of Wiener measure. In the case of Wiener measure, the construction gives discrete time simulation of an independent sequence of standard Wiener processes, which is then used for the numerical evaluation of Feynman-Kac formulas.
引用
收藏
页码:241 / 260
页数:20
相关论文
共 50 条
  • [21] Monte Carlo integration with Markov chain
    Tan, Zhiqiang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (07) : 1967 - 1980
  • [22] Exponential Integration for Hamiltonian Monte Carlo
    Chao, Wei-Lun
    Solomon, Justin
    Michels, Dominik L.
    Sha, Fei
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1142 - 1151
  • [23] Monte Carlo complexity of parametric integration
    Heinrich, S
    Sindambiwe, E
    JOURNAL OF COMPLEXITY, 1999, 15 (03) : 317 - 341
  • [24] The optimal error of Monte Carlo integration
    Mathe, P
    JOURNAL OF COMPLEXITY, 1995, 11 (04) : 394 - 415
  • [25] TRAPEZOIDAL MONTE-CARLO INTEGRATION
    MASRY, E
    CAMBANIS, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (01) : 225 - 246
  • [26] Improving Monte Carlo integration by symmetrization
    Hartung, Tobias
    Jansen, Karl
    Leoevey, Hernan
    Volmer, Julia
    DIVERSITY AND BEAUTY OF APPLIED OPERATOR THEORY, 2018, 268 : 291 - 317
  • [27] MONTE CARLO ANALYSIS FOR MICROBIAL GROWTH CURVES
    Oksuz, Hasan Basri
    Buzrul, Sencer
    JOURNAL OF MICROBIOLOGY BIOTECHNOLOGY AND FOOD SCIENCES, 2020, 10 (03): : 418 - 423
  • [28] WEIGHTED MONTE-CARLO INTEGRATION
    YAKOWITZ, S
    KRIMMEL, JE
    SZIDAROVSZKY, F
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (06) : 1289 - 1300
  • [29] A Generalization of Spatial Monte Carlo Integration
    Yasuda, Muneki
    Uchizawa, Kei
    NEURAL COMPUTATION, 2021, 33 (04) : 1037 - 1062
  • [30] Variance Analysis for Monte Carlo Integration
    Pilleboue, Adrien
    Singh, Gurprit
    Coeurjolly, David
    Kazhdan, Michael
    Ostromoukhov, Victor
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (04):