Monte Carlo Integration Using Elliptic Curves

被引:0
|
作者
Mok, Chung Pang [1 ]
Zheng, Huimin [2 ,3 ,4 ]
机构
[1] Shanghai Inst Math & Interdisciplinary Sci, Shanghai 200438, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[3] Jiangsu Natl Ctr Appl Math, Nanjing 210023, Peoples R China
[4] Anhui Sci & Technol Univ, Coll Informat & Network Engn, Bengbu 233030, Anhui, Peoples R China
关键词
Pseudorandom vectors; Elliptic curves; Finite fields; Monte Carlo integration; Feynman-Kac formulas;
D O I
10.1007/s11401-025-0013-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors carry out numerical experiments with regard to the Monte Carlo integration method, using as input the pseudorandom vectors that are generated by the algorithm proposed in [Mok, C. P., Pseudorandom Vector Generation Using Elliptic Curves and Applications to Wiener Processes, Finite Fields and Their Applications, 85, 2023, 102129], which is based on the arithmetic theory of elliptic curves over finite fields. They consider integration in the following two cases: The case of Lebesgue measure on the unit hypercube [0, 1]d, and as well as the case of Wiener measure. In the case of Wiener measure, the construction gives discrete time simulation of an independent sequence of standard Wiener processes, which is then used for the numerical evaluation of Feynman-Kac formulas.
引用
收藏
页码:241 / 260
页数:20
相关论文
共 50 条
  • [11] Error estimates in Monte Carlo and Quasi-Monte Carlo integration
    Lazopouls, A
    ACTA PHYSICA POLONICA B, 2004, 35 (11): : 2617 - 2632
  • [12] Streamlining resummed QCD calculations using Monte Carlo integration
    David Farhi
    Ilya Feige
    Marat Freytsis
    Matthew D. Schwartz
    Journal of High Energy Physics, 2016
  • [13] Distributed Monte Carlo integration using CORBA and Java']Java
    Solms, F
    Steeb, WH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (07): : 903 - 915
  • [14] Calculations of HREM image intensity using Monte Carlo integration
    Chang, LY
    Meyer, RR
    Kirkland, AI
    ULTRAMICROSCOPY, 2005, 104 (3-4) : 271 - 280
  • [15] Comparing random number generators using Monte Carlo integration
    Lakshmikantham, V.
    Sen, Syamal Kumar
    Samanta, Tathagata
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2005, 1 (02): : 143 - 165
  • [16] Streamlining resummed QCD calculations using Monte Carlo integration
    Farhi, David
    Feige, Ilya
    Freytsis, Marat
    Schwartz, Matthew D.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08):
  • [17] MULTILEVEL QUASI-MONTE CARLO INTEGRATION WITH PRODUCT WEIGHTS FOR ELLIPTIC PDES WITH LOGNORMAL COEFFICIENTS
    Herrmann, Lukas
    Schwab, Christoph
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (05): : 1507 - 1552
  • [18] MONTE CARLO INTEGRATION OF RATE EQUATIONS
    SCHAAD, LJ
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1963, 85 (22) : 3588 - &
  • [19] Systematic Numbers for Monte Carlo Integration
    Moradi, Mojtaba
    AMBIENT SCIENCE, 2016, 3 (02) : 1 - 3
  • [20] WEIGHTED MONTE-CARLO INTEGRATION
    YAKOWITZ, S
    KRIMMEL, J
    SZIDAROVSZKY, F
    SIAM REVIEW, 1978, 20 (03) : 637 - 637