Proper central exponent of superalgebras with graded involution or superinvolution

被引:0
|
作者
La Mattina, D. [1 ]
dos Santos, R. B. [2 ]
Vieira, A. C. [2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Fed Minas Gerais, Dept Matemat, Inst Ciencias Exatas, Ave Antonio Carlos 6627, BR-31123970 Belo Horizonte, Brazil
关键词
central polynomial; Superinvolution; Graded involution; Exponent; POLYNOMIAL-IDENTITIES; ALGEBRAS; GROWTH; CONJECTURE;
D O I
10.1007/s00209-025-03689-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1984, Regev started the quantitative study of the space of central polynomials by computing the exponential rate of growth of central polynomials of matrix algebras. More generally, for n >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 1$$\end{document}, one considers the dimension cn delta(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_n<^>{\delta }(A)$$\end{document} of the space of multilinear central polynomials of degree n modulo the polynomial identities of an algebra A. In 2018, Giambruno and Zaicev proved the limit limn ->infinity cn delta(A)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim \limits _{n \rightarrow \infty }\root n \of {c_n<^>{\delta }(A)}$$\end{document} exists and it is an integer. In this paper we consider such a situation for superalgebras endowed with a superinvolution or a graded involution and present the existence of the corresponding limit.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Unitary superalgebras with graded involution or superinvolution of polynomial growth
    Costa, W. D. S.
    Ioppolo, A.
    dos Santos, R. B.
    Vieira, A. C.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (09)
  • [2] The exponent for superalgebras with superinvolution
    Ioppolo, Antonio
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 : 1 - 20
  • [3] Superalgebras with superinvolution or graded involution with colengths sequence bounded by 3
    Ioppolo, Antonio
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (04) : 821 - 838
  • [4] Superalgebras with Involution or Superinvolution and Almost Polynomial Growth of the Codimensions
    Giambruno, Antonio
    Ioppolo, Antonio
    La Mattina, Daniela
    ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (04) : 961 - 976
  • [5] Superalgebras with Involution or Superinvolution and Almost Polynomial Growth of the Codimensions
    Antonio Giambruno
    Antonio Ioppolo
    Daniela La Mattina
    Algebras and Representation Theory, 2019, 22 : 961 - 976
  • [6] Primitive superalgebras with superinvolution
    Racine, ML
    JOURNAL OF ALGEBRA, 1998, 206 (02) : 588 - 614
  • [7] Superalgebras with graded involution and star-graded colength bounded by 3
    do Nascimento, T. S.
    Vieira, A. C.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (10): : 1999 - 2020
  • [8] Lie superhomomorphisms in superalgebras with superinvolution
    Wang, Yu
    JOURNAL OF ALGEBRA, 2011, 344 (01) : 333 - 353
  • [9] Group gradings on superinvolution simple superalgebras
    Bahturin, Yu
    Tvalavadze, M.
    Tvalavadze, T.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) : 1054 - 1069
  • [10] Minimal varieties of PI-superalgebras with graded involution
    Onofrio Mario Di Vincenzo
    Viviane Ribeiro Tomaz da Silva
    Ernesto Spinelli
    Israel Journal of Mathematics, 2021, 241 : 869 - 909