Deep learning surrogate for predicting hydraulic conductivity tensors from stochastic discrete fracture-matrix models

被引:0
|
作者
Spetlik, Martin [1 ]
Brezina, Jan [1 ]
Laloy, Eric [2 ]
机构
[1] Tech Univ Liberec, Inst New Technol & Appl Informat, Fac Mechatron Informat & Interdisciplinary Studies, Studentska 1402-2, Liberec 46117, Czech Republic
[2] Belgian Nucl Res Ctr SCK CEN, Engn & Geosyst Anal Unit, Sustainable Waste Management & Decommissioning, Boeretang 200, B-2400 Mol, Belgium
关键词
Deep learning surrogate; 2D DFM models; Numerical homogenization; Equivalent hydraulic conductivity tensor; PERMEABILITY TENSORS; FLOW; NETWORK; ROCK;
D O I
10.1007/s10596-024-10324-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Simulating water flow in fractured crystalline rock requires tackling its stochastic nature. We aim to utilize the multilevel Monte Carlo method for cost-effective estimation of simulation statistics. This multiscale approach entails upscaling of fracture hydraulic conductivity by homogenization. In this work, we replace 2D numerical homogenization based on the discrete fracture-matrix (DFM) approach with a surrogate model to expedite computations. We employ a deep convolutional neural network (CNN) connected to a deep feed-forward neural network as the surrogate. The equivalent hydraulic conductivity tensor Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} is predicted based on the input tensorial spatial random fields (SRFs) of hydraulic conductivities, along with the cross-section and hydraulic conductivity of fractures. Three independent surrogates with the same architecture are trained, each with a different ratio of fracture-to-matrix hydraulic conductivity Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document}. As the ratio Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document} increases, the distribution of Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} becomes more complex, leading to a decline in the prediction accuracy of the surrogates. The prediction accuracy improves as the fracture density decreases, regardless of the Kf/Km\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}_{\varvec{f}}\varvec{/}\varvec{K}_{\varvec{m}}$$\end{document}. We also investigate prediction accuracy for different correlation lengths of input SRFs. The observed speedup gained by surrogates varies from 4x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{4}\varvec{\times }$$\end{document} to 28x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{28}\varvec{\times }$$\end{document} depending on the number of homogenization blocks. Upscaling by numerical homogenization and surrogate modeling is compared on two macroscale problems. For the first one, the accuracy of outcomes is directly correlated with the accuracy of Keq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{K}<^>{\varvec{eq}}$$\end{document} predictions. For the latter one, we observe only a mild impact of the upscaling method on the accuracy of the results.
引用
收藏
页码:1425 / 1440
页数:16
相关论文
共 43 条
  • [1] Solute transport in stochastic discrete fracture-matrix systems: Impact of network structure
    Hu, Yingtao
    Zou, Liangchao
    Xu, Wenjie
    Zhan, Liangtong
    Xia, Peng
    Zhuang, Duanyang
    UNDERGROUND SPACE, 2025, 20 : 69 - 82
  • [2] A deep learning upscaling framework: Reactive transport and mineral precipitation in fracture-matrix systems
    Wang, Ziyan
    Battiato, Ilenia
    ADVANCES IN WATER RESOURCES, 2024, 183
  • [3] Advanced computation of steady-state fluid flow in Discrete Fracture-Matrix models: FEM–BEM and VEM–VEM fracture-block coupling
    Berrone S.
    Borio A.
    Fidelibus C.
    Pieraccini S.
    Scialò S.
    Vicini F.
    GEM - International Journal on Geomathematics, 2018, 9 (2) : 377 - 399
  • [4] A deep learning-based surrogate model for trans-dimensional inversion of discrete fracture networks
    Feng, Runhai
    Nasser, Saleh
    JOURNAL OF HYDROLOGY, 2024, 638
  • [5] Predicting saturated hydraulic conductivity from air permeability: Application in stochastic water infiltration modeling
    Loll, P
    Moldrup, P
    Schjonning, P
    Riley, H
    WATER RESOURCES RESEARCH, 1999, 35 (08) : 2387 - 2400
  • [6] Predicting saturated hydraulic conductivity from particle size distributions using machine learning
    de Rijk, Valerie
    Buma, Jelle
    Veldkamp, Hans
    Zech, Alraune
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2025, 39 (02) : 423 - 435
  • [7] Hydraulic and electrical conductivity of porous rock from 3D stochastic models of the microstructure
    Liang, Z
    Ioannidis, MA
    Chatzis, I
    COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2: COMPUTATIONAL METHODS FOR SUBSURFACE FLOW AND TRANSPORT - COMPUTATIONAL METHODS, SURFACE WATER SYSTEMS AND HYDROLOGY, 2000, : 833 - 839
  • [8] Deep-Learning-Enhanced CT Image Analysis for Predicting Hydraulic Conductivity of Coarse-Grained Soils
    Peng, Jiayi
    Shen, Zhenzhong
    Zhang, Wenbing
    Song, Wen
    WATER, 2023, 15 (14)
  • [9] Integrating temporal deep learning models for predicting screen-out risk levels in hydraulic fracturing
    Qiao, Ying
    Lin, Cuishan
    Zhao, Yuguo
    Zhou, Liangzhi
    GEOENERGY SCIENCE AND ENGINEERING, 2025, 244
  • [10] Performance Analysis of Multi-Task Deep Learning Models for Flux Regression in Discrete Fracture Networks
    Berrone, Stefano
    Della Santa, Francesco
    GEOSCIENCES, 2021, 11 (03) : 1 - 24