Remaining useful life prediction of nuclear reactor control rod drive mechanism based on dynamic temporal convolutional network

被引:1
|
作者
Wang, Chen [1 ]
Zhang, Liming [1 ,2 ]
Chen, Ling [1 ]
Tan, Tian [1 ]
Zhang, Cong [1 ]
机构
[1] Naval Univ Engn, Sch Nucl Sci & Technol, Wuhan 430033, Peoples R China
[2] Chongqing Pump Ind CO LTD, Chongqing 400030, Peoples R China
关键词
Control rod drive mechanism; Remaining useful life prediction; Temporal convolution network; Dynamic activation function; Attention mechanism;
D O I
10.1016/j.ress.2024.110580
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The control rod drive mechanism (CRDM) is a critical equipment of the nuclear reactor, and the prediction of its remaining useful life (RUL) is important for the efficient maintenance and ensuring the safe, reliable operation of nuclear power plants. In this paper, a novel framework for the RUL prediction of CRDM is proposed, which is a dynamic temporal convolution network (DTCN) based on dynamic activation function and attention mechanism. Firstly, the temporal convolution network (TCN) is used as the backbone of the prediction model, to extract the temporal dependence of the input data. Next, the dynamic activation function DReLU is integrated into the TCN, which can dynamically activate features and capture variable degradation information. Then, introducing the attention mechanism improves the influence of important high-level features extracted by the network on RUL prediction, thereby improving the efficiency of feature extraction in the network. Finally, the DTCN outputs the predicted RUL by performing non-linear mapping on the extracted features. The CRDM accelerated life test platform is established and a series of experiments are conducted using the collected CRDM full-life vibration dataset. The results demonstrated the performance and advantages of the proposed method.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Local Enhancing Transformer With Temporal Convolutional Attention Mechanism for Bearings Remaining Useful Life Prediction
    Peng, Huachao
    Jiang, Bin
    Mao, Zehui
    Liu, Shangkun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [22] Multistep prediction of remaining useful life of proton exchange membrane fuel cell based on temporal convolutional network
    Pan, Mingzhang
    Hu, Pengfei
    Gao, Ran
    Liang, Ke
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2023, 20 (04) : 408 - 422
  • [23] Remaining Useful Life Prediction of a Lithium-Ion Battery Based on a Temporal Convolutional Network with Data Extension
    Zhao, Jing
    Liu, Dayong
    Meng, Lingshuai
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2024, 34 (01) : 105 - 117
  • [24] A new sorting feature-based temporal convolutional network for remaining useful life prediction of rotating machinery
    Sun, Heng
    Xia, Min
    Hu, Yawei
    Lu, Siliang
    Liu, Yongbin
    Wang, Qunjing
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 95
  • [25] A dual-stream temporal convolutional network for remaining useful life prediction of rolling bearings
    Zhang, Yazhou
    Zhao, Xiaoqiang
    Xu, Rongrong
    Peng, Zhenrui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [26] Remaining useful life prediction for rotating machinery based on dynamic graph and spatial-temporal network
    Zeng, Xiangyu
    Yang, Chaoying
    Liu, Jie
    Zhou, Kaibo
    Li, Di
    Wei, Shangwan
    Liu, Yujie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (03)
  • [27] Remaining Useful Life Prognostics Based on Deep Combined Temporal Bidirectional Convolutional Network
    Liu Xiaozhi
    Li PeiHong
    Yang Yinghua
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 4604 - 4609
  • [28] Remaining Useful Life Prediction of Bearings Based on Multi-head Self-attention Mechanism, Multi-scale Temporal Convolutional Network and Convolutional Neural Network
    Wei, Hao
    Gu, Yu
    Zhang, Qinghua
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3027 - 3032
  • [29] Remaining Useful Life Prediction Based on a Double-Convolutional Neural Network Architecture
    Yang, Boyuan
    Liu, Ruonan
    Zio, Enrico
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (12) : 9521 - 9530
  • [30] Remaining useful life prediction of rolling bearings based on convolutional recurrent attention network
    Zhang, Qiang
    Ye, Zijian
    Shao, Siyu
    Niu, Tianlin
    Zhao, Yuwei
    ASSEMBLY AUTOMATION, 2022, 42 (03) : 372 - 387