Remaining Useful Life Prediction of a Lithium-Ion Battery Based on a Temporal Convolutional Network with Data Extension

被引:1
|
作者
Zhao, Jing [1 ,2 ]
Liu, Dayong [1 ,3 ]
Meng, Lingshuai [1 ,3 ]
机构
[1] Shenyang Inst Automat, Chinese Acad Sci, Shenyang 110016, Peoples R China
[2] Inst Robot & Intelligent Mfg, Chinese Acad Sci, Shenyang 110169, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
lithium-ion battery; remaining useful life; complete EEMD with adaptive noise; temporal convolutional net;
D O I
10.61822/amcs-2024-0008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned underwater vehicles are typically deployed in deep sea environments, which present unique working conditions. Lithium-ion power batteries are crucial for powering underwater vehicles, and it is vital to accurately predict their remaining useful life (RUL) to maintain system reliability and safety. We propose a residual life prediction model framework based on complete ensemble empirical mode decomposition with an adaptive noise-temporal convolutional net (CEEMDAN-TCN), which utilizes dilated causal convolutions to improve the model's ability to capture local capacity regeneration and enhance the overall prediction accuracy. CEEMDAN is employed to denoise the data and prevent RUL prediction errors caused by local regeneration, and feature expansion is utilized to extend the temporal dimension of the original data. The NASA and CALCE battery capacity datasets are used as input to train the network framework. The output is the current predicted residual capacity, which is compared with the real residual battery capacity. The MAE, RMSE and RE are used as the evaluation indexes of the RUL prediction performance. The proposed network model is verified on the NASA and CACLE datasets. The evaluation results show that our method has better life prediction performance. At the same time, it is proved that both feature expansion and modal decomposition can improve the generalization ability of the model, which is very useful in industrial scenarios.
引用
收藏
页码:105 / 117
页数:13
相关论文
共 50 条
  • [1] State of Health Monitoring and Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Temporal Convolutional Network
    Zhou, Danhua
    Li, Zhanying
    Zhu, Jiali
    Zhang, Haichuan
    Hou, Lin
    [J]. IEEE ACCESS, 2020, 8 : 53307 - 53320
  • [2] Prediction of Remaining Useful Life of Lithium-ion Battery Based on UKF
    Huang, Mengtao
    Zhang, Qibo
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4502 - 4506
  • [3] Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model
    Tang, Xuliang
    Wan, Heng
    Wang, Weiwen
    Gu, Mengxu
    Wang, Linfeng
    Gan, Linfeng
    [J]. SUSTAINABILITY, 2023, 15 (07)
  • [4] Remaining useful life Prediction for lithium-ion battery based on CEEMDAN and SVR
    Shi, Yuanhao
    Yang, Yanru
    Wen, Jie
    Cui, Fangshu
    Wang, Jingcheng
    [J]. 2020 IEEE 18TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), VOL 1, 2020, : 888 - 893
  • [5] Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network
    Liang, Haifeng
    Yuan, Peng
    Gao, Yajing
    [J]. Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2021, 41 (10): : 213 - 219
  • [6] Remaining Useful Life Prediction of Power Lithium-Ion Battery based on Artificial Neural Network Model
    Hou, Enguang
    Qiao, Xin
    Liu, Guangmin
    [J]. PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON MECHANICAL, ELECTRONIC, CONTROL AND AUTOMATION ENGINEERING (MECAE 2017), 2017, 61 : 371 - 374
  • [7] Prediction of Remaining Useful Life of the Lithium-Ion Battery Based on Improved Particle Filtering
    Wu, Tiezhou
    Zhao, Tong
    Xu, Siyun
    [J]. FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [8] Prediction for the Remaining Useful Life of Lithium-ion Battery Based on PCA-NARX
    Pang, Xiao-Qiong
    Wang, Zhu-Qing
    Zeng, Jian-Chao
    Jia, Jian-Fang
    Shi, Yuan-Hao
    Wen, Jie
    [J]. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2019, 39 (04): : 406 - 412
  • [9] Lithium-ion battery remaining useful life prediction based on sequential Bayesian updating
    Zhao, Fei
    Guo, Ming
    Liu, Xuejuan
    [J]. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (02): : 635 - 642
  • [10] Remaining Useful Life Prediction of Lithium-ion Battery Based on Discrete Wavelet Transform
    Wang, Yujie
    Pan, Rui
    Yang, Duo
    Tang, Xiaopeng
    Chen, Zonghai
    [J]. 8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2053 - 2058