Remaining useful life prediction of nuclear reactor control rod drive mechanism based on dynamic temporal convolutional network

被引:1
|
作者
Wang, Chen [1 ]
Zhang, Liming [1 ,2 ]
Chen, Ling [1 ]
Tan, Tian [1 ]
Zhang, Cong [1 ]
机构
[1] Naval Univ Engn, Sch Nucl Sci & Technol, Wuhan 430033, Peoples R China
[2] Chongqing Pump Ind CO LTD, Chongqing 400030, Peoples R China
关键词
Control rod drive mechanism; Remaining useful life prediction; Temporal convolution network; Dynamic activation function; Attention mechanism;
D O I
10.1016/j.ress.2024.110580
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The control rod drive mechanism (CRDM) is a critical equipment of the nuclear reactor, and the prediction of its remaining useful life (RUL) is important for the efficient maintenance and ensuring the safe, reliable operation of nuclear power plants. In this paper, a novel framework for the RUL prediction of CRDM is proposed, which is a dynamic temporal convolution network (DTCN) based on dynamic activation function and attention mechanism. Firstly, the temporal convolution network (TCN) is used as the backbone of the prediction model, to extract the temporal dependence of the input data. Next, the dynamic activation function DReLU is integrated into the TCN, which can dynamically activate features and capture variable degradation information. Then, introducing the attention mechanism improves the influence of important high-level features extracted by the network on RUL prediction, thereby improving the efficiency of feature extraction in the network. Finally, the DTCN outputs the predicted RUL by performing non-linear mapping on the extracted features. The CRDM accelerated life test platform is established and a series of experiments are conducted using the collected CRDM full-life vibration dataset. The results demonstrated the performance and advantages of the proposed method.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Temporal convolutional network with soft threshold and contractile self-attention mechanism for remaining useful life prediction of rolling bearings
    Ma, Hao
    Wang, Jinrui
    Han, Baokun
    Zhang, Zongzhen
    Bao, Huaiqian
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [32] State of Health Monitoring and Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Temporal Convolutional Network
    Zhou, Danhua
    Li, Zhanying
    Zhu, Jiali
    Zhang, Haichuan
    Hou, Lin
    IEEE ACCESS, 2020, 8 : 53307 - 53320
  • [33] Deep separable convolutional network for remaining useful life prediction of machinery
    Wang, Biao
    Lei, Yaguo
    Li, Naipeng
    Yan, Tao
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 134
  • [34] Deep Recurrent Convolutional Neural Network for Remaining Useful Life Prediction
    Ma, Meng
    Mao, Zhu
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [35] Remaining useful life prediction of bearings based on temporal convolutional networks with residual separable blocks
    Yazhou Zhang
    Xiaoqiang Zhao
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [36] Remaining useful life prediction of bearings based on temporal convolutional networks with residual separable blocks
    Zhang, Yazhou
    Zhao, Xiaoqiang
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (11)
  • [37] Channel attention & temporal attention based temporal convolutional network: A dual attention framework for remaining useful life prediction of the aircraft engines
    Lin, Lin
    Wu, Jinlei
    Fu, Song
    Zhang, Sihao
    Tong, Changsheng
    Zu, Lizheng
    ADVANCED ENGINEERING INFORMATICS, 2024, 60
  • [38] A Novel Convolution Network Based on Temporal Attention Fusion Mechanism for Remaining Useful Life Prediction of Rolling Bearings
    Meng, Zong
    Xu, Bo
    Cao, Lixiao
    Fan, Fengjie
    Li, Jimeng
    IEEE SENSORS JOURNAL, 2023, 23 (04) : 3990 - 3999
  • [39] Application of Residual Structure Time Convolutional Network Based on Attention Mechanism in Remaining Useful Life Interval Prediction of Bearings
    Zhang, Chunsheng
    Zeng, Mengxin
    Fan, Jingjin
    Li, Xiaoyong
    SENSORS, 2024, 24 (13)
  • [40] Remaining useful life prediction for stratospheric airships based on a channel and temporal attention network
    Luo, Yuzhao
    Zhu, Ming
    Chen, Tian
    Zheng, Zewei
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 143