Characterizations of U-frames and frames that are finitely a U-frame

被引:0
|
作者
Tlharesakgosi, Batsile [1 ]
机构
[1] Univ South Africa, Dept Math Sci, Johannesburg, South Africa
关键词
Zero-dimensional frame; U-space; U-frame; Commutative ring; Finitely a U-frame; Almost weak Baer ring; Strongly zero-dimensional F-frame; SPACES; RINGS;
D O I
10.1007/s00012-025-00888-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we give algebraic characterizations of U-frames in terms of ring-theoretic properties of the ring RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}L$$\end{document} of real-valued continuous functions on a completely regular frame L. We show that a frame is a U-frame if and only if it is an F-frame and its & Ccaron;ech-Stone compactification is zero-dimensional. We will also introduce frames that are finitely a U-frame and we will characterize them in terms of ring-theoretic properties in RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}L$$\end{document}.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Wavelet frame operators and admissible frames
    Nambudiri, T. C. Easwaran
    Parthasarathy, K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (09)
  • [42] Linear combinations of frames and frame packets
    Christensen, O
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (04): : 805 - 815
  • [43] Scheduling multipacket frames with frame deadlines
    Łukasz Jeż
    Yishay Mansour
    Boaz Patt-Shamir
    Journal of Scheduling, 2017, 20 : 623 - 634
  • [44] Scheduling multipacket frames with frame deadlines
    Jez, Lukasz
    Mansour, Yishay
    Patt-Shamir, Boaz
    JOURNAL OF SCHEDULING, 2017, 20 (06) : 623 - 634
  • [45] Admissibility and frame homotopy for quaternionic frames
    Needham, Tom
    Shonkwiler, Clayton
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 645 : 237 - 255
  • [46] Characterizations of dual multiwavelet frames of periodic functions
    Atreas, Nikolaos D.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (03)
  • [47] Characterizations of Tzitzeica curves using Bishop frames
    Eren, Kemal
    Ersoy, Soley
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (18) : 12046 - 12059
  • [48] Some algebraic characterizations of F-frames
    Dube, Themba
    ALGEBRA UNIVERSALIS, 2009, 62 (2-3) : 273 - 288
  • [49] Some algebraic characterizations of F-frames
    Themba Dube
    Algebra universalis, 2009, 62 : 273 - 288
  • [50] Characterizations of wavelet bases and frames in Hilbert spaces
    Lee, SL
    Tang, WS
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING V, 1997, 3169 : 282 - 290