共 50 条
Characterizations of U-frames and frames that are finitely a U-frame
被引:0
|作者:
Tlharesakgosi, Batsile
[1
]
机构:
[1] Univ South Africa, Dept Math Sci, Johannesburg, South Africa
关键词:
Zero-dimensional frame;
U-space;
U-frame;
Commutative ring;
Finitely a U-frame;
Almost weak Baer ring;
Strongly zero-dimensional F-frame;
SPACES;
RINGS;
D O I:
10.1007/s00012-025-00888-6
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this article, we give algebraic characterizations of U-frames in terms of ring-theoretic properties of the ring RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}L$$\end{document} of real-valued continuous functions on a completely regular frame L. We show that a frame is a U-frame if and only if it is an F-frame and its & Ccaron;ech-Stone compactification is zero-dimensional. We will also introduce frames that are finitely a U-frame and we will characterize them in terms of ring-theoretic properties in RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}L$$\end{document}.
引用
收藏
页数:17
相关论文