Characterizations of U-frames and frames that are finitely a U-frame

被引:0
|
作者
Tlharesakgosi, Batsile [1 ]
机构
[1] Univ South Africa, Dept Math Sci, Johannesburg, South Africa
关键词
Zero-dimensional frame; U-space; U-frame; Commutative ring; Finitely a U-frame; Almost weak Baer ring; Strongly zero-dimensional F-frame; SPACES; RINGS;
D O I
10.1007/s00012-025-00888-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we give algebraic characterizations of U-frames in terms of ring-theoretic properties of the ring RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}L$$\end{document} of real-valued continuous functions on a completely regular frame L. We show that a frame is a U-frame if and only if it is an F-frame and its & Ccaron;ech-Stone compactification is zero-dimensional. We will also introduce frames that are finitely a U-frame and we will characterize them in terms of ring-theoretic properties in RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}L$$\end{document}.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Frame Potentials and the Geometry of Frames
    Bernhard G. Bodmann
    John Haas
    Journal of Fourier Analysis and Applications, 2015, 21 : 1344 - 1383
  • [22] Convolutional frames and the frame potential
    Fickus, M
    Johnson, BD
    Kornelson, K
    Okoudjou, KA
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 19 (01) : 77 - 91
  • [23] Lightweight and optimized U-frame design for space-borne two-dimensional turntable
    Wei, Yu-xuan
    Wang, Zhen-yu
    Li, Zhi-guo
    Huang, Le-hong
    Yang, Kai
    Ma, Yu-bao
    CHINESE OPTICS, 2024, 17 (04) : 896 - 908
  • [24] Frame Potentials and the Geometry of Frames
    Bodmann, Bernhard G.
    Haas, John
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (06) : 1344 - 1383
  • [25] Operator Characterizations, Rigidity and Constructions of (Ω, μ)-Frames
    Guo, Xunxiang
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (03) : 346 - 360
  • [26] Characterizations of weaving K-frames
    Bhandari, Animesh
    Borah, Debajit
    Mukherjee, Saikat
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2020, 96 (05) : 39 - 43
  • [27] Some characterizations of fusion Banach frames
    Pathak, H. K.
    Goswami, Mayur Puri
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2015, 13 (03)
  • [28] Tight frame approximation for multi-frames and super-frames
    Han, DG
    JOURNAL OF APPROXIMATION THEORY, 2004, 129 (01) : 78 - 93
  • [29] American Ebola Story: frames in U.S. National Newspapers
    Luisi, Monique L. R.
    Barker, Josh
    Geana, Mugur
    ATLANTIC JOURNAL OF COMMUNICATION, 2018, 26 (05) : 267 - 277
  • [30] Frames of Influence: U.S. Environmental Rulemaking Case Studies
    Rinfret, Sara R.
    REVIEW OF POLICY RESEARCH, 2011, 28 (03) : 231 - 246