Characterizations of U-frames and frames that are finitely a U-frame

被引:0
|
作者
Tlharesakgosi, Batsile [1 ]
机构
[1] Univ South Africa, Dept Math Sci, Johannesburg, South Africa
关键词
Zero-dimensional frame; U-space; U-frame; Commutative ring; Finitely a U-frame; Almost weak Baer ring; Strongly zero-dimensional F-frame; SPACES; RINGS;
D O I
10.1007/s00012-025-00888-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we give algebraic characterizations of U-frames in terms of ring-theoretic properties of the ring RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}L$$\end{document} of real-valued continuous functions on a completely regular frame L. We show that a frame is a U-frame if and only if it is an F-frame and its & Ccaron;ech-Stone compactification is zero-dimensional. We will also introduce frames that are finitely a U-frame and we will characterize them in terms of ring-theoretic properties in RL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}L$$\end{document}.
引用
收藏
页数:17
相关论文
共 50 条