Efficient estimation of expected information gain in Bayesian experimental design with multi-index Monte Carlo

被引:1
|
作者
Du, Xinting [1 ]
Wang, Hejin [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Expected information gain; Multi-index Monte Carlo; Bayesian experimental design; MULTILEVEL; MLMC;
D O I
10.1007/s11222-024-10522-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Expected information gain (EIG) is an important criterion in Ba yesian optimal experimental design. Nested Monte Carlo and M ulti-level Monte Carlo (MLMC) methods have been used to compute EIG. However, in cases where the forward output function is not analytically tractable, even MLMC can not achieve its best rate. In this paper, we use Multi-index Monte Carlo to compute the EIG, which can give O(epsilon-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ O(\varepsilon <^>{-2}) $$\end{document} computation work. Both theoretical analysis and numerical results are presented.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Multi-index probabilistic anomaly detection for large span bridges using Bayesian estimation and evidential reasoning
    Xu, Xiang
    Forde, Michael C.
    Ren, Yuan
    Huang, Qiao
    Liu, Bin
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (02): : 948 - 965
  • [32] Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations
    Long, Quan
    Scavino, Marco
    Tempone, Raul
    Wang, Suojin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 259 : 24 - 39
  • [33] Economic Analysis for Small Hydroelectric Power Plant using Extended Multi-Index Methodology - An Approach Stochastic by the Monte Carlo Simulation
    Caricimi, R.
    Lima, J. D.
    IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (08) : 2184 - 2191
  • [34] The Connection between Bayesian Inference and Information Theory for Model Selection, Information Gain and Experimental Design
    Oladyshkin, Sergey
    Nowak, Wolfgang
    ENTROPY, 2019, 21 (11)
  • [35] Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
    Kleinegesse, Steven
    Gutmann, Michael U.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 119, 2020, 119
  • [36] Bayesian Estimation of Multi-Trap RTN Parameters Using Markov Chain Monte Carlo Method
    Awano, Hiromitsu
    Tsutsui, Hiroshi
    Ochi, Hiroyuki
    Sato, Takashi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (12) : 2272 - 2283
  • [37] Enhanced adaptive sequential Monte Carlo method for Bayesian model class selection by quantifying data fit and information gain
    Yang, Jia-Hua
    Liu, Wen-Yue
    An, Yong-Hui
    Lam, Heung-Fai
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 206
  • [38] Utilizing uncertainty information in remaining useful life estimation via Bayesian neural networks and Hamiltonian Monte Carlo
    Benker, Maximilian
    Furtner, Lukas
    Semm, Thomas
    Zaeh, Michael F.
    Journal of Manufacturing Systems, 2021, 61 : 799 - 807
  • [39] Utilizing uncertainty information in remaining useful life estimation via Bayesian neural networks and Hamiltonian Monte Carlo
    Benker, Maximilian
    Furtner, Lukas
    Semm, Thomas
    Zaeh, Michael F.
    JOURNAL OF MANUFACTURING SYSTEMS, 2021, 61 : 799 - 807
  • [40] Efficient stochastic optimisation by unadjusted Langevin Monte Carlo Application to maximum marginal likelihood and empirical Bayesian estimation
    De Bortoli, Valentin
    Durmus, Alain
    Pereyra, Marcelo
    Vidal, Ana F.
    STATISTICS AND COMPUTING, 2021, 31 (03)