Efficient estimation of expected information gain in Bayesian experimental design with multi-index Monte Carlo

被引:1
|
作者
Du, Xinting [1 ]
Wang, Hejin [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Expected information gain; Multi-index Monte Carlo; Bayesian experimental design; MULTILEVEL; MLMC;
D O I
10.1007/s11222-024-10522-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Expected information gain (EIG) is an important criterion in Ba yesian optimal experimental design. Nested Monte Carlo and M ulti-level Monte Carlo (MLMC) methods have been used to compute EIG. However, in cases where the forward output function is not analytically tractable, even MLMC can not achieve its best rate. In this paper, we use Multi-index Monte Carlo to compute the EIG, which can give O(epsilon-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ O(\varepsilon <^>{-2}) $$\end{document} computation work. Both theoretical analysis and numerical results are presented.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Enhanced multi-index Monte Carlo by means of multiple semicoarsened multigrid for anisotropic diffusion problems
    Robbe, Pieterjan
    Nuyens, Dirk
    Vandewalle, Stefan
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (03)
  • [22] Gaussian Process Based Expected Information Gain Computation for Bayesian Optimal Design
    Xu, Zhihang
    Liao, Qifeng
    ENTROPY, 2020, 22 (02)
  • [23] Calculating the Expected Value of Sample Information Using Efficient Nested Monte Carlo: A Tutorial
    Heath, Anna
    Baio, Gianluca
    VALUE IN HEALTH, 2018, 21 (11) : 1299 - 1304
  • [24] ANALYSIS OF AN INVESTMENT PROJECT TO MINIMIZE THE BREAKS OF STOCK WITH THE USE OF MULTI-INDEX METHODOLOGY AND MONTE CARLO SIMULATION
    Greca, Felipe Medeiros
    Barddal, Regiane Larissa
    Ravache, Suelen Cristina
    Silva, Dayane Gomes
    Catapan, Anderson
    Martins, Paulo Fernando
    REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 2014, 4 (03): : 1092 - 1107
  • [25] Risk-based environmental remediation: Bayesian Monte Carlo analysis and the expected value of sample information
    Dakins, ME
    Toll, JE
    Small, MJ
    Brand, KP
    RISK ANALYSIS, 1996, 16 (01) : 67 - 79
  • [27] Efficient Bayesian estimation for GARCH-type models via Sequential Monte Carlo
    Li, Dan
    Clements, Adam
    Drovandi, Christopher
    ECONOMETRICS AND STATISTICS, 2021, 19 : 22 - 46
  • [28] Deployment optimization of UAV formation based on multi-index orthogonal experimental design
    Li, Xiang
    Xing, Qing-Hua
    Dong, Tao
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2013, 35 (02): : 331 - 337
  • [29] Approximate Laplace importance sampling for the estimation of expected Shannon information gain in high-dimensional Bayesian design for nonlinear models
    Englezou, Yiolanda
    Waite, Timothy W.
    Woods, David C.
    STATISTICS AND COMPUTING, 2022, 32 (05)
  • [30] Approximate Laplace importance sampling for the estimation of expected Shannon information gain in high-dimensional Bayesian design for nonlinear models
    Yiolanda Englezou
    Timothy W. Waite
    David C. Woods
    Statistics and Computing, 2022, 32