Efficient estimation of expected information gain in Bayesian experimental design with multi-index Monte Carlo

被引:1
|
作者
Du, Xinting [1 ]
Wang, Hejin [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Expected information gain; Multi-index Monte Carlo; Bayesian experimental design; MULTILEVEL; MLMC;
D O I
10.1007/s11222-024-10522-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Expected information gain (EIG) is an important criterion in Ba yesian optimal experimental design. Nested Monte Carlo and M ulti-level Monte Carlo (MLMC) methods have been used to compute EIG. However, in cases where the forward output function is not analytically tractable, even MLMC can not achieve its best rate. In this paper, we use Multi-index Monte Carlo to compute the EIG, which can give O(epsilon-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ O(\varepsilon <^>{-2}) $$\end{document} computation work. Both theoretical analysis and numerical results are presented.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Unbiased multi-index Monte Carlo
    Crisan, Dan
    Del Moral, Pierre
    Houssineau, Jeremie
    Jasra, Ajay
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (02) : 257 - 273
  • [2] Multi-index Sequential Monte Carlo Ratio Estimators for Bayesian Inverse problems
    Jasra, Ajay
    Law, Kody J. H.
    Walton, Neil
    Yang, Shangda
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024, 24 (04) : 1249 - 1304
  • [3] On Estimating the Gradient of the Expected Information Gain in Bayesian Experimental Design
    Ao, Ziqiao
    Li, Jinglai
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 18, 2024, : 20311 - 20319
  • [4] A MULTI-INDEX MARKOV CHAIN MONTE CARLO METHOD
    Jasra, Ajay
    Kamatani, Kengo
    Law, Kody J. H.
    Zhou, Yan
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2018, 8 (01) : 61 - 73
  • [5] A randomized multi-index sequential Monte Carlo method
    Xinzhu Liang
    Shangda Yang
    Simon L. Cotter
    Kody J. H. Law
    Statistics and Computing, 2023, 33
  • [6] A randomized multi-index sequential Monte Carlo method
    Liang, Xinzhu
    Yang, Shangda
    Cotter, Simon L. L.
    Law, Kody J. H.
    STATISTICS AND COMPUTING, 2023, 33 (05)
  • [7] Multi-index Monte Carlo: when sparsity meets sampling
    Haji-Ali, Abdul-Lateef
    Nobile, Fabio
    Tempone, Raul
    NUMERISCHE MATHEMATIK, 2016, 132 (04) : 767 - 806
  • [8] Multi-index Monte Carlo: when sparsity meets sampling
    Abdul-Lateef Haji-Ali
    Fabio Nobile
    Raúl Tempone
    Numerische Mathematik, 2016, 132 : 767 - 806
  • [9] ANALYSIS OF MULTI-INDEX MONTE CARLO ESTIMATORS FOR A ZAKAI SPDE
    Reisinger, Christoph
    Wang, Zhenru
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (02) : 202 - 236
  • [10] Multilevel Monte Carlo estimation of expected information gains
    Goda, Takashi
    Hironaka, Tomohiko
    Iwamoto, Takeru
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2020, 38 (04) : 581 - 600