Unbiased multi-index Monte Carlo

被引:4
|
作者
Crisan, Dan [1 ]
Del Moral, Pierre [2 ]
Houssineau, Jeremie [3 ]
Jasra, Ajay [3 ]
机构
[1] Imperial Coll London, Dept Math, London, England
[2] INRIA Bordeaux, Talence, France
[3] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
基金
英国工程与自然科学研究理事会;
关键词
Monte Carlo; multi-index discretization; unbiasedness; smoothing;
D O I
10.1080/07362994.2017.1394880
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of Monte Carlo-based approximations of expectations of random variables such that their laws are only available via certain discretizations. Sampling from the discretized versions of these laws can typically introduce a bias. In this paper, we show how to remove that bias, by introducing a new version of multi-index Monte Carlo (MIMC) that has the added advantage of reducing the computational effort, relative to i.i.d.sampling from the most precise discretization, for a given level of error. We cover extensions of results regarding variance and optimality criteria for the new approach. We apply the methodology to the problem of computing an unbiased mollified version of the solution of a partial differential equation with random coefficients. A second application concerns the Bayesian inference (the smoothing problem) of an infinite-dimensional signal modeled by the solution of a stochastic partial differential equation that is observed on a discrete space grid and at discrete times. Both applications are complemented by numerical simulations.
引用
收藏
页码:257 / 273
页数:17
相关论文
共 50 条
  • [1] A MULTI-INDEX MARKOV CHAIN MONTE CARLO METHOD
    Jasra, Ajay
    Kamatani, Kengo
    Law, Kody J. H.
    Zhou, Yan
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2018, 8 (01) : 61 - 73
  • [2] A randomized multi-index sequential Monte Carlo method
    Xinzhu Liang
    Shangda Yang
    Simon L. Cotter
    Kody J. H. Law
    [J]. Statistics and Computing, 2023, 33
  • [3] A randomized multi-index sequential Monte Carlo method
    Liang, Xinzhu
    Yang, Shangda
    Cotter, Simon L. L.
    Law, Kody J. H.
    [J]. STATISTICS AND COMPUTING, 2023, 33 (05)
  • [4] ANALYSIS OF MULTI-INDEX MONTE CARLO ESTIMATORS FOR A ZAKAI SPDE
    Reisinger, Christoph
    Wang, Zhenru
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (02) : 202 - 236
  • [5] Multi-index Monte Carlo: when sparsity meets sampling
    Haji-Ali, Abdul-Lateef
    Nobile, Fabio
    Tempone, Raul
    [J]. NUMERISCHE MATHEMATIK, 2016, 132 (04) : 767 - 806
  • [6] Multi-index Monte Carlo: when sparsity meets sampling
    Abdul-Lateef Haji-Ali
    Fabio Nobile
    Raúl Tempone
    [J]. Numerische Mathematik, 2016, 132 : 767 - 806
  • [7] Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation
    Abdul-Lateef Haji-Ali
    Raúl Tempone
    [J]. Statistics and Computing, 2018, 28 : 923 - 935
  • [8] Multi-index Sequential Monte Carlo Ratio Estimators for Bayesian Inverse problems
    Jasra, Ajay
    Law, Kody J. H.
    Walton, Neil
    Yang, Shangda
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024, 24 (04) : 1249 - 1304
  • [9] A MULTI-INDEX QUASI-MONTE CARLO ALGORITHM FOR LOGNORMAL DIFFUSION PROBLEMS
    Robbe, Pieterjan
    Nuyens, Dirk
    Vandewalle, Stefan
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : S851 - S872
  • [10] Multilevel and Multi-index Monte Carlo methods for the McKean-Vlasov equation
    Haji-Ali, Abdul-Lateef
    Tempone, Raul
    [J]. STATISTICS AND COMPUTING, 2018, 28 (04) : 923 - 935