A quantum approach for optimal control

被引:0
|
作者
Sandesara, Hirmay [1 ]
Shukla, Alok [1 ]
Vedula, Prakash [2 ]
机构
[1] Ahmedabad Univ, Sch Arts & Sci, Ahmadabad 380009, India
[2] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK USA
关键词
EIGENSOLVER;
D O I
10.1007/s11128-025-04710-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we propose a novel variational quantum approach for solving a class of nonlinear optimal control problems. Our approach integrates Dirac's canonical quantization of dynamical systems with the solution of the ground state of the resulting non-Hermitian Hamiltonian via a variational quantum eigensolver (VQE). We introduce a new perspective on the Dirac bracket formulation for generalized Hamiltonian dynamics in the presence of constraints, providing a clear motivation and illustrative examples. Additionally, we explore the structural properties of Dirac brackets within the context of multidimensional constrained optimization problems. Our approach for solving a class of nonlinear optimal control problems employs a VQE-based approach to determine the eigenstate and corresponding eigenvalue associated with the ground state energy of a non-Hermitian Hamiltonian. Assuming access to an ideal VQE, our formulation demonstrates excellent results, as evidenced by selected computational examples. Furthermore, our method performs well when combined with a VQE-based approach for non-Hermitian Hamiltonian systems. Our VQE-based formulation effectively addresses challenges associated with a wide range of optimal control problems, particularly in high-dimensional scenarios. Compared to standard classical approaches, our quantum-based method shows significant promise and offers a compelling alternative for tackling complex, high-dimensional optimization challenges.
引用
收藏
页数:42
相关论文
共 50 条
  • [41] OPTIMAL-CONTROL OF QUANTUM OBJECTS
    HAO, DN
    AUTOMATION AND REMOTE CONTROL, 1986, 47 (02) : 162 - 168
  • [42] Optimal control with a multidimensional quantum invariant
    Orozco-Ruiz, Modesto
    Simsek, Selwyn
    Kulmiya, Sahra A.
    Hile, Samuel J.
    Hensinger, Winfried K.
    Mintert, Florian
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [43] Optimal Quantum Control with Poor Statistics
    Sauvage, Frederic
    Mintert, Florian
    PRX QUANTUM, 2020, 1 (02):
  • [44] Glassy Phase of Optimal Quantum Control
    Day, Alexandre G. R.
    Bukov, Marin
    Weinberg, Phillip
    Mehta, Pankaj
    Sels, Dries
    PHYSICAL REVIEW LETTERS, 2019, 122 (02)
  • [45] Quantum parameter estimation with optimal control
    Liu, Jing
    Yuan, Haidong
    PHYSICAL REVIEW A, 2017, 96 (01)
  • [46] Parametric approach to optimal control
    A. Radwan
    O. Vasilieva
    R. Enkhbat
    A. Griewank
    J. Guddat
    Optimization Letters, 2012, 6 : 1303 - 1316
  • [47] An Optimal Control Approach to Flocking
    Beaver, Logan E.
    Kroninger, Chris
    Malikopoulos, Andreas A.
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 683 - 688
  • [48] HEURISTIC APPROACH TO OPTIMAL CONTROL
    NOTLEY, MG
    INTERNATIONAL JOURNAL OF CONTROL, 1971, 13 (03) : 429 - &
  • [49] Parametric approach to optimal control
    Radwan, A.
    Vasilieva, O.
    Enkhbat, R.
    Griewank, A.
    Guddat, J.
    OPTIMIZATION LETTERS, 2012, 6 (07) : 1303 - 1316
  • [50] Approach to robust optimal control
    Univ of Auckland, Auckland, New Zealand
    Int J Control, 4 (885-896):