A quantum approach for optimal control

被引:0
|
作者
Sandesara, Hirmay [1 ]
Shukla, Alok [1 ]
Vedula, Prakash [2 ]
机构
[1] Ahmedabad Univ, Sch Arts & Sci, Ahmadabad 380009, India
[2] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK USA
关键词
EIGENSOLVER;
D O I
10.1007/s11128-025-04710-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we propose a novel variational quantum approach for solving a class of nonlinear optimal control problems. Our approach integrates Dirac's canonical quantization of dynamical systems with the solution of the ground state of the resulting non-Hermitian Hamiltonian via a variational quantum eigensolver (VQE). We introduce a new perspective on the Dirac bracket formulation for generalized Hamiltonian dynamics in the presence of constraints, providing a clear motivation and illustrative examples. Additionally, we explore the structural properties of Dirac brackets within the context of multidimensional constrained optimization problems. Our approach for solving a class of nonlinear optimal control problems employs a VQE-based approach to determine the eigenstate and corresponding eigenvalue associated with the ground state energy of a non-Hermitian Hamiltonian. Assuming access to an ideal VQE, our formulation demonstrates excellent results, as evidenced by selected computational examples. Furthermore, our method performs well when combined with a VQE-based approach for non-Hermitian Hamiltonian systems. Our VQE-based formulation effectively addresses challenges associated with a wide range of optimal control problems, particularly in high-dimensional scenarios. Compared to standard classical approaches, our quantum-based method shows significant promise and offers a compelling alternative for tackling complex, high-dimensional optimization challenges.
引用
收藏
页数:42
相关论文
共 50 条
  • [31] Optimal control, geometry, and quantum computing
    Nielsen, Michael A.
    Dowling, Mark R.
    Gu, Mile
    Doherty, Andrew C.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [32] Quantum optimal control of HCN isomerization
    Artamonov, Maxim
    Ho, Tak-San
    Rabitz, Herschel
    CHEMICAL PHYSICS, 2006, 328 (1-3) : 147 - 155
  • [33] Quantum optimal control of ozone isomerization
    Artamonov, M
    Ho, TS
    Rabitz, H
    CHEMICAL PHYSICS, 2004, 305 (1-3) : 213 - 222
  • [34] Optimal Control of Families of Quantum Gates
    Sauvage, Frederic
    Mintert, Florian
    PHYSICAL REVIEW LETTERS, 2022, 129 (05)
  • [35] Chattering phenomenon in quantum optimal control
    Robin, R.
    Boscain, U.
    Sigalotti, M.
    Sugny, D.
    NEW JOURNAL OF PHYSICS, 2022, 24 (12):
  • [36] Optimal control in a quantum cooling problem
    Salamon, Peter
    Hoffmann, Karl Heinz
    Tsirlin, Anatoly
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1263 - 1266
  • [37] Optimal control methods for quantum batteries
    Mazzoncini, Francesco
    Cavina, Vasco
    Andolina, Gian Marcello
    Erdman, Paolo Andrea
    Giovannetti, Vittorio
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [38] QuOCS: The quantum optimal control suite
    Rossignolo, Marco
    Reisser, Thomas
    Marshall, Alastair
    Rembold, Phila
    Pagano, Alice
    Vetter, Philipp J.
    Said, Ressa S.
    Mueller, Matthias M.
    Motzoi, Felix
    Calarco, Tommaso
    Jelezko, Fedor
    Montangero, Simone
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 291
  • [39] Optimal Control at the Quantum Speed Limit
    Caneva, T.
    Murphy, M.
    Calarco, T.
    Fazio, R.
    Montangero, S.
    Giovannetti, V.
    Santoro, G. E.
    PHYSICAL REVIEW LETTERS, 2009, 103 (24)
  • [40] Optimal control with a multidimensional quantum invariant
    Orozco-Ruiz, Modesto
    Simsek, Selwyn
    Kulmiya, Sahra A.
    Hile, Samuel J.
    Hensinger, Winfried K.
    Mintert, Florian
    Physical Review A, 2023, 108 (02):