Infinitely Many Normalized Solutions for a Quasilinear Schrödinger Equation

被引:0
|
作者
Yang, Xianyong [1 ]
Zhao, Fukun [2 ]
机构
[1] Yunnan Minzu Univ, Sch Math & Comp Sci, Kunming 650500, Peoples R China
[2] Yunnan Normal Univ, Sch Math, Kunming 650500, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasilinear Schr & ouml; dinger equation; Normalized solutions; Berestycki-Lions nonlinearity; SCALAR FIELD-EQUATIONS; SIGN-CHANGING SOLUTIONS; SCHRODINGER-EQUATIONS; STANDING WAVES; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS; EXISTENCE; STABILITY;
D O I
10.1007/s12220-024-01893-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the following quasilinear Schr & ouml;dinger equation {-Delta u+mu u-Delta(u(2))u=g(u) in R-N, integral R-N|u|(2)dx=m, u is an element of H1(R-N), where N >= 2, m > 0 is a given constant, mu is an element of R is a Lagrange multiplier. Under the almost optimal assumptions of g, the existence of infinitely many normalized solutions is obtained via a minimax argument. Moreover, we give a new strategy for finding a minimizer for constraint problems with nonhomogeneous nonlinearities.
引用
收藏
页数:32
相关论文
共 50 条