A Note on the Facial Edge-Coloring Conjecture

被引:0
|
作者
Jendrol', Stanislav [1 ]
Onderko, Alfred [1 ]
机构
[1] Safarik Univ, Inst Math, Jesenna 5, Kosice 04010, Slovakia
关键词
Plane graph; l-facial coloring; Edge-coloring; EVERY PLANAR MAP; GRAPHS;
D O I
10.1007/s00373-025-02904-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected plane graph that can have loops and multiple edges. An l-facial edge-coloring of a plane graph G is a coloring of edges of G such that any two edges, that share the same facial trail of length at most l+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l + 1$$\end{document}, receive distinct colors. It is an edge variant of the l-facial vertex coloring, which arose as a generalization of the well-known cyclic coloring. It was conjectured by Lu & zcaron;ar et al. in 2015 that every plane graph admits an l-facial edge-coloring with at most 3l+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3l + 1$$\end{document} colors for any l >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \ge 1$$\end{document}. It is known that the bound 3l+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3l+1$$\end{document} is tight for general plane graphs. The conjecture was recently confirmed for l <= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \le 3$$\end{document} by Hor & ncaron;& aacute;k, Lu & zcaron;ar and & Scaron;torgel (3-facial edge-coloring of plane graphs, Discrete Math. 346 (2023) 113312). In this note we prove that the conjecture holds, in the case when l >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \ge 4$$\end{document}, for every graph whose reduction (the graph obtained from G by suppressing all its 2-vertices) is 3-edge connected, and the length of the longest path in G with interior vertices of degree 2 is at most 3l+110\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3l + 1}{10}$$\end{document}.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Strong edge-coloring of planar graphs
    Hudak, David
    Luzar, Borut
    Sotak, Roman
    Skrekovski, Riste
    DISCRETE MATHEMATICS, 2014, 324 : 41 - 49
  • [42] Star edge-coloring of square grids
    Holub, Premysl
    Luzar, Borut
    Mihalikova, Erika
    Mockovciakova, Martina
    Sotak, Roman
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 392
  • [43] Revisiting semistrong edge-coloring of graphs
    Luzar, Borut
    Mockovciakova, Martina
    Sotak, Roman
    JOURNAL OF GRAPH THEORY, 2024, 105 (04) : 612 - 632
  • [44] Improved edge-coloring with three colors
    Kowalik, Lukasz
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2006, 4271 : 90 - 101
  • [45] Algorithm for the cost edge-coloring of trees
    Zhou, X
    Nishizeki, T
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2004, 8 (01) : 97 - 108
  • [46] Note – Edge-Coloring Cliques with Three Colors on All 4-Cliques
    Dhruv Mubayi
    Combinatorica, 1998, 18 : 293 - 296
  • [47] Improved edge-coloring with three colors
    Kowalik, Lukasz
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (38-40) : 3733 - 3742
  • [48] THE NP-COMPLETENESS OF EDGE-COLORING
    HOLYER, I
    SIAM JOURNAL ON COMPUTING, 1981, 10 (04) : 718 - 720
  • [49] Approximating the Max Edge-Coloring Problem
    Bourgeois, Nicolas
    Lucarelli, Giorgio
    Milis, Ioannis
    Paschos, Vangelis Th.
    COMBINATORIAL ALGORITHMS, 2009, 5874 : 83 - +
  • [50] Algorithm for the Cost Edge-Coloring of Trees
    Xiao Zhou
    Takao Nishizeki
    Journal of Combinatorial Optimization, 2004, 8 : 97 - 108