A Note on the Facial Edge-Coloring Conjecture

被引:0
|
作者
Jendrol', Stanislav [1 ]
Onderko, Alfred [1 ]
机构
[1] Safarik Univ, Inst Math, Jesenna 5, Kosice 04010, Slovakia
关键词
Plane graph; l-facial coloring; Edge-coloring; EVERY PLANAR MAP; GRAPHS;
D O I
10.1007/s00373-025-02904-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected plane graph that can have loops and multiple edges. An l-facial edge-coloring of a plane graph G is a coloring of edges of G such that any two edges, that share the same facial trail of length at most l+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l + 1$$\end{document}, receive distinct colors. It is an edge variant of the l-facial vertex coloring, which arose as a generalization of the well-known cyclic coloring. It was conjectured by Lu & zcaron;ar et al. in 2015 that every plane graph admits an l-facial edge-coloring with at most 3l+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3l + 1$$\end{document} colors for any l >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \ge 1$$\end{document}. It is known that the bound 3l+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3l+1$$\end{document} is tight for general plane graphs. The conjecture was recently confirmed for l <= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \le 3$$\end{document} by Hor & ncaron;& aacute;k, Lu & zcaron;ar and & Scaron;torgel (3-facial edge-coloring of plane graphs, Discrete Math. 346 (2023) 113312). In this note we prove that the conjecture holds, in the case when l >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \ge 4$$\end{document}, for every graph whose reduction (the graph obtained from G by suppressing all its 2-vertices) is 3-edge connected, and the length of the longest path in G with interior vertices of degree 2 is at most 3l+110\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3l + 1}{10}$$\end{document}.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A note on strong edge-coloring of claw-free cubic graphs
    Han, Zhenmeng
    Cui, Qing
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (03) : 2503 - 2508
  • [32] A Note on the Strong Edge-coloring of Outerplanar Graphs with Maximum Degree 3
    Liu, Shun-yi
    Zhang, He-ping
    Lu, Hong-liang
    Lin, Yu-qing
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (04): : 883 - 890
  • [33] A note on strong edge-coloring of claw-free cubic graphs
    Zhenmeng Han
    Qing Cui
    Journal of Applied Mathematics and Computing, 2023, 69 : 2503 - 2508
  • [34] Optimal Edge-Coloring with Edge Rate Constraints
    Dereniowski, Dariusz
    Kubiak, Wieslaw
    Ries, Bernard
    Zwols, Yori
    NETWORKS, 2013, 62 (03) : 165 - 182
  • [35] FACIAL RAINBOW EDGE-COLORING OF SIMPLE 3-CONNECTED PLANE GRAPHS
    Czap, Julius
    OPUSCULA MATHEMATICA, 2020, 40 (04) : 475 - 482
  • [36] Edge-coloring almost bipartite multigraphs
    Feder, Tomas
    Subi, Carlos
    INFORMATION PROCESSING LETTERS, 2013, 113 (18) : 685 - 689
  • [37] Rainbow edge-coloring and rainbow domination
    LeSaulnier, Timothy D.
    West, Douglas B.
    DISCRETE MATHEMATICS, 2013, 313 (19) : 2020 - 2025
  • [38] A COMPARISON OF 2 EDGE-COLORING FORMULATIONS
    LEE, J
    LEUNG, J
    OPERATIONS RESEARCH LETTERS, 1993, 13 (04) : 215 - 223
  • [39] EDGE-COLORING OF MULTIGRAPHS - RECOLORING TECHNIQUE
    GOLDBERG, MK
    JOURNAL OF GRAPH THEORY, 1984, 8 (01) : 123 - 137
  • [40] Strong edge-coloring for jellyfish graphs
    Chang, Gerard J.
    Chen, Sheng-Hua
    Hsu, Chi-Yun
    Hung, Chia-Man
    Lai, Huei-Ling
    DISCRETE MATHEMATICS, 2015, 338 (12) : 2348 - 2355