A Note on the Facial Edge-Coloring Conjecture

被引:0
|
作者
Jendrol', Stanislav [1 ]
Onderko, Alfred [1 ]
机构
[1] Safarik Univ, Inst Math, Jesenna 5, Kosice 04010, Slovakia
关键词
Plane graph; l-facial coloring; Edge-coloring; EVERY PLANAR MAP; GRAPHS;
D O I
10.1007/s00373-025-02904-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected plane graph that can have loops and multiple edges. An l-facial edge-coloring of a plane graph G is a coloring of edges of G such that any two edges, that share the same facial trail of length at most l+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l + 1$$\end{document}, receive distinct colors. It is an edge variant of the l-facial vertex coloring, which arose as a generalization of the well-known cyclic coloring. It was conjectured by Lu & zcaron;ar et al. in 2015 that every plane graph admits an l-facial edge-coloring with at most 3l+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3l + 1$$\end{document} colors for any l >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \ge 1$$\end{document}. It is known that the bound 3l+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3l+1$$\end{document} is tight for general plane graphs. The conjecture was recently confirmed for l <= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \le 3$$\end{document} by Hor & ncaron;& aacute;k, Lu & zcaron;ar and & Scaron;torgel (3-facial edge-coloring of plane graphs, Discrete Math. 346 (2023) 113312). In this note we prove that the conjecture holds, in the case when l >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \ge 4$$\end{document}, for every graph whose reduction (the graph obtained from G by suppressing all its 2-vertices) is 3-edge connected, and the length of the longest path in G with interior vertices of degree 2 is at most 3l+110\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3l + 1}{10}$$\end{document}.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Some topics on edge-coloring
    Liu, Guizhen
    Xu, Changqing
    DISCRETE GEOMETRY, COMBINATORICS AND GRAPH THEORY, 2007, 4381 : 101 - +
  • [22] Edge-coloring bipartite graphs
    Kapoor, A
    Rizzi, R
    JOURNAL OF ALGORITHMS, 2000, 34 (02) : 390 - 396
  • [23] ON EDGE-COLORING INDIFFERENCE GRAPHS
    DEFIGUEIREDO, CMH
    MEIDANIS, J
    DEMELLO, CP
    LATIN '95: THEORETICAL INFORMATICS, 1995, 911 : 286 - 299
  • [24] 2 CONJECTURES ON EDGE-COLORING
    HILTON, AJW
    DISCRETE MATHEMATICS, 1989, 74 (1-2) : 61 - 64
  • [25] Remarks on an Edge-coloring Problem
    Hoppen, Carlos
    Lefmann, Hanno
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 511 - 521
  • [26] A GENERALIZATION OF EDGE-COLORING IN GRAPHS
    HAKIMI, SL
    KARIV, O
    JOURNAL OF GRAPH THEORY, 1986, 10 (02) : 139 - 154
  • [27] Parsimonious edge-coloring on surfaces
    Belcastro, Sarah-Marie
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (02) : 306 - 309
  • [28] Edge-Coloring of Split Graphs
    de Almeida, Sheila Morais
    de Mello, Celia Picinin
    Morgana, Aurora
    ARS COMBINATORIA, 2015, 119 : 363 - 375
  • [29] A Note on the Strong Edge-coloring of Outerplanar Graphs with Maximum Degree 3
    Shun-yi LIU
    He-ping ZHANG
    Hong-liang LU
    Yu-qing LIN
    Acta Mathematicae Applicatae Sinica, 2016, 32 (04) : 883 - 890
  • [30] A note on the strong edge-coloring of outerplanar graphs with maximum degree 3
    Shun-yi Liu
    He-ping Zhang
    Hong-liang Lu
    Yu-qing Lin
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 883 - 890