A Note on the Facial Edge-Coloring Conjecture

被引:0
|
作者
Jendrol', Stanislav [1 ]
Onderko, Alfred [1 ]
机构
[1] Safarik Univ, Inst Math, Jesenna 5, Kosice 04010, Slovakia
关键词
Plane graph; l-facial coloring; Edge-coloring; EVERY PLANAR MAP; GRAPHS;
D O I
10.1007/s00373-025-02904-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected plane graph that can have loops and multiple edges. An l-facial edge-coloring of a plane graph G is a coloring of edges of G such that any two edges, that share the same facial trail of length at most l+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l + 1$$\end{document}, receive distinct colors. It is an edge variant of the l-facial vertex coloring, which arose as a generalization of the well-known cyclic coloring. It was conjectured by Lu & zcaron;ar et al. in 2015 that every plane graph admits an l-facial edge-coloring with at most 3l+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3l + 1$$\end{document} colors for any l >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \ge 1$$\end{document}. It is known that the bound 3l+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3l+1$$\end{document} is tight for general plane graphs. The conjecture was recently confirmed for l <= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \le 3$$\end{document} by Hor & ncaron;& aacute;k, Lu & zcaron;ar and & Scaron;torgel (3-facial edge-coloring of plane graphs, Discrete Math. 346 (2023) 113312). In this note we prove that the conjecture holds, in the case when l >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \ge 4$$\end{document}, for every graph whose reduction (the graph obtained from G by suppressing all its 2-vertices) is 3-edge connected, and the length of the longest path in G with interior vertices of degree 2 is at most 3l+110\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3l + 1}{10}$$\end{document}.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] On the simultaneous edge-coloring conjecture
    Hajiaghaee, MT
    Mahmoodian, ES
    Mirrokni, VS
    Saberi, A
    Tusserkani, R
    DISCRETE MATHEMATICS, 2000, 216 (1-3) : 267 - 272
  • [2] Note on injective edge-coloring of graphs
    Miao, Zhengke
    Song, Yimin
    Yu, Gexin
    DISCRETE APPLIED MATHEMATICS, 2022, 310 : 65 - 74
  • [3] From edge-coloring to strong edge-coloring
    Borozan, Valentin
    Chang, Gerard Jennhwa
    Cohen, Nathann
    Fujita, Shinya
    Narayanan, Narayanan
    Naserasr, Reza
    Valicov, Petru
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (02):
  • [4] Facial packing edge-coloring of plane graphs
    Czap, Julius
    Jendrol, Stanislav
    DISCRETE APPLIED MATHEMATICS, 2016, 213 : 71 - 75
  • [5] Facial Rainbow Edge-Coloring of Plane Graphs
    Stanislav Jendrol’
    Graphs and Combinatorics, 2018, 34 : 669 - 676
  • [6] Facial Rainbow Edge-Coloring of Plane Graphs
    Jendrol, Stanislav
    GRAPHS AND COMBINATORICS, 2018, 34 (04) : 669 - 676
  • [7] Parallel algorithms for the edge-coloring and edge-coloring update problems
    Liang, WF
    Shen, XJ
    Hu, Q
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1996, 32 (01) : 66 - 73
  • [8] 3-facial edge-coloring of plane graphs
    Hornak, Mirko
    Luzar, Borut
    Storgel, Kenny
    DISCRETE MATHEMATICS, 2023, 346 (05)
  • [9] NOTE – Edge-Coloring Cliques with Many Colors on Subcliques
    Dennis Eichhorn
    Dhruv Mubayi
    Combinatorica, 2000, 20 : 441 - 444
  • [10] Note on list star edge-coloring of subcubic graphs
    Luzar, Borut
    Mockovciakova, Martina
    Sotak, Roman
    JOURNAL OF GRAPH THEORY, 2019, 90 (03) : 304 - 310