Covering a Graph with Densest Subgraphs

被引:0
|
作者
Riccardo Dondi [1 ]
Alexandru Popa [2 ]
机构
[1] Università degli Studi di Bergamo,Dipartimento di Lettere, Filosofia, Comunicazione
[2] University of Bucharest,Department of Computer Science
来源
La Matematica | 2024年 / 3卷 / 4期
关键词
Dense subgraphs; Graph algorithms; Approximation algorithms; Graph mining;
D O I
10.1007/s44007-024-00139-5
中图分类号
学科分类号
摘要
Finding densest subgraphs is a fundamental problem in graph mining, with several applications in different fields. In this paper, we consider two variants of the problem of covering a graph with k densest subgraphs, where k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}. The first variant aims to find a collection of k subgraphs of maximum density, the second variant asks for a set of k subgraphs such that they maximize an objective function that includes the sum of the subgraphs densities and a distance function, in order to differentiate the computed subgraphs. We show that the first variant of the problem is solvable in polynomial time, for any k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}. For the second variant, which is NP-hard for k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 3$$\end{document}, we present an approximation algorithm that achieves a factor of 37\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{7}$$\end{document}. The approximation algorithm is obtained by showing that a related problem, that of finding k distinct densest subgraphs can be solved in polynomial time.
引用
收藏
页码:1360 / 1378
页数:18
相关论文
共 50 条
  • [41] ON INDEPENDENT COMPLETE SUBGRAPHS IN A GRAPH
    MOON, JW
    CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (01): : 95 - &
  • [42] Regular subgraphs of a regular graph
    Kano, Mikio
    Annals of the New York Academy of Sciences, 1989, 576
  • [43] A DECOMPOSITION OF A GRAPH INTO DENSE SUBGRAPHS
    TOIDA, S
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (06): : 583 - 589
  • [44] ON THE NUMBER OF HOMOGENEOUS SUBGRAPHS OF A GRAPH
    SZEKELY, LA
    COMBINATORICA, 1984, 4 (04) : 363 - 372
  • [45] Top-k overlapping densest subgraphs: approximation algorithms and computational complexity
    Dondi, Riccardo
    Hosseinzadeh, Mohammad Mehdi
    Mauri, Giancarlo
    Zoppis, Italo
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (01) : 80 - 104
  • [46] Forbidden subgraphs in the norm graph
    Ball, Simeon
    Pepe, Valentina
    DISCRETE MATHEMATICS, 2016, 339 (04) : 1206 - 1211
  • [47] Covering graphs with few complete bipartite subgraphs
    Fleischner, Herbert
    Mujuni, Egbert
    Paulusma, Daniel
    Szeider, Stefan
    FSTTCS 2007: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, PROCEEDINGS, 2007, 4855 : 340 - +
  • [48] Complete subgraphs in a multipartite graph
    Lo, Allan
    Treglown, Andrew
    Zhao, Yi
    COMBINATORICS PROBABILITY & COMPUTING, 2022, 31 (06): : 1092 - 1101
  • [49] On induced subgraphs of the Hamming graph
    Dong, Dingding
    JOURNAL OF GRAPH THEORY, 2021, 96 (01) : 160 - 166
  • [50] REGULAR SUBGRAPHS OF A REGULAR GRAPH
    KANO, M
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 281 - 284