Covering a Graph with Densest Subgraphs

被引:0
|
作者
Riccardo Dondi [1 ]
Alexandru Popa [2 ]
机构
[1] Università degli Studi di Bergamo,Dipartimento di Lettere, Filosofia, Comunicazione
[2] University of Bucharest,Department of Computer Science
来源
La Matematica | 2024年 / 3卷 / 4期
关键词
Dense subgraphs; Graph algorithms; Approximation algorithms; Graph mining;
D O I
10.1007/s44007-024-00139-5
中图分类号
学科分类号
摘要
Finding densest subgraphs is a fundamental problem in graph mining, with several applications in different fields. In this paper, we consider two variants of the problem of covering a graph with k densest subgraphs, where k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}. The first variant aims to find a collection of k subgraphs of maximum density, the second variant asks for a set of k subgraphs such that they maximize an objective function that includes the sum of the subgraphs densities and a distance function, in order to differentiate the computed subgraphs. We show that the first variant of the problem is solvable in polynomial time, for any k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}. For the second variant, which is NP-hard for k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 3$$\end{document}, we present an approximation algorithm that achieves a factor of 37\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{7}$$\end{document}. The approximation algorithm is obtained by showing that a related problem, that of finding k distinct densest subgraphs can be solved in polynomial time.
引用
收藏
页码:1360 / 1378
页数:18
相关论文
共 50 条
  • [31] ON A CLASS OF ISOMETRIC SUBGRAPHS OF A GRAPH
    NOWAKOWSKI, R
    RIVAL, I
    COMBINATORICA, 1982, 2 (01) : 79 - 90
  • [32] THE LATTICE OF CONNECTED SUBGRAPHS OF A GRAPH
    STEELMAN, JH
    AMERICAN MATHEMATICAL MONTHLY, 1990, 97 (10): : 924 - 925
  • [33] The Reliability of Subgraphs in the Arrangement Graph
    Lin, Limei
    Xu, Li
    Zhou, Shuming
    Wang, Dajin
    IEEE TRANSACTIONS ON RELIABILITY, 2015, 64 (02) : 807 - 818
  • [34] SMALL DENSE SUBGRAPHS OF A GRAPH
    Jiang, Tao
    Newman, Andrew
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (01) : 124 - 142
  • [35] Covering minimum spanning trees of random subgraphs
    Goemans, Michel X.
    Vondrak, Jan
    RANDOM STRUCTURES & ALGORITHMS, 2006, 29 (03) : 257 - 276
  • [36] A Hopf algebra on subgraphs of a graph
    Wang, Xiaomeng
    Xu, Shou-Jun
    Gao, Xing
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (09)
  • [37] Partitioning a Graph into Complementary Subgraphs
    Julliano R. Nascimento
    Uéverton S. Souza
    Jayme L. Szwarcfiter
    Graphs and Combinatorics, 2021, 37 : 1311 - 1331
  • [38] PARTITION OF A GRAPH INTO PLANE SUBGRAPHS
    MELIKHOV, AN
    BERSHTEY.LS
    KUREYCHI.VM
    LISYAK, VV
    ENGINEERING CYBERNETICS, 1972, 10 (06): : 1087 - 1090
  • [39] PARTITION A GRAPH INTO ASCENDING SUBGRAPHS
    HU, WH
    FU, HL
    UTILITAS MATHEMATICA, 1989, 36 : 97 - 105
  • [40] FORBIDDEN SUBGRAPHS AND GRAPH DECOMPOSITION
    WAGNER, DK
    NETWORKS, 1987, 17 (01) : 105 - 110