Covering a Graph with Densest Subgraphs

被引:0
|
作者
Riccardo Dondi [1 ]
Alexandru Popa [2 ]
机构
[1] Università degli Studi di Bergamo,Dipartimento di Lettere, Filosofia, Comunicazione
[2] University of Bucharest,Department of Computer Science
来源
La Matematica | 2024年 / 3卷 / 4期
关键词
Dense subgraphs; Graph algorithms; Approximation algorithms; Graph mining;
D O I
10.1007/s44007-024-00139-5
中图分类号
学科分类号
摘要
Finding densest subgraphs is a fundamental problem in graph mining, with several applications in different fields. In this paper, we consider two variants of the problem of covering a graph with k densest subgraphs, where k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}. The first variant aims to find a collection of k subgraphs of maximum density, the second variant asks for a set of k subgraphs such that they maximize an objective function that includes the sum of the subgraphs densities and a distance function, in order to differentiate the computed subgraphs. We show that the first variant of the problem is solvable in polynomial time, for any k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}. For the second variant, which is NP-hard for k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 3$$\end{document}, we present an approximation algorithm that achieves a factor of 37\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{7}$$\end{document}. The approximation algorithm is obtained by showing that a related problem, that of finding k distinct densest subgraphs can be solved in polynomial time.
引用
收藏
页码:1360 / 1378
页数:18
相关论文
共 50 条
  • [21] Densest Subgraph in Dynamic Graph Streams
    McGregor, Andrew
    Tench, David
    Vorotnikova, Sofya
    Vu, Hoa T.
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2015, PT II, 2015, 9235 : 472 - 482
  • [22] ISOMORPHIC SUBGRAPHS IN A GRAPH
    ERDOS, P
    PACH, J
    PYBER, L
    COMBINATORICS /, 1988, 52 : 553 - 556
  • [23] COVERING WEIGHTED GRAPHS BY EVEN SUBGRAPHS
    FAN, GH
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 49 (01) : 137 - 141
  • [24] Efficient Densest Subgraphs Discovery in Large Dynamic Graphs by Greedy Approximation
    Han, Tao
    IEEE ACCESS, 2023, 11 : 49367 - 49377
  • [25] On covering graphs by complete bipartite subgraphs
    Jukna, S.
    Kulikov, A. S.
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3399 - 3403
  • [26] Densest Diverse Subgraphs: How to Plan a Successful Cocktail Party with Diversity
    Miyauchi, Atsushi
    Chen, Tianyi
    Sotiropoulos, Konstantinos
    Tsourakakis, Charalampos E.
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 1710 - 1721
  • [27] Spectral densest subgraph and independence number of a graph
    Andersen, Reid
    Cioba, Sebastian M.
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2007, 13 (11) : 1501 - 1513
  • [28] Practical Parallel Algorithms for Near-Optimal Densest Subgraphs on Massive Graphs
    Sukprasert, Pattara
    Liu, Quanquan C.
    Dhulipala, Laxman
    Shun, Julian
    2024 PROCEEDINGS OF THE SYMPOSIUM ON ALGORITHM ENGINEERING AND EXPERIMENTS, ALENEX, 2024, : 59 - 73
  • [29] ON A CLASS OF ISOMETRIC SUBGRAPHS OF A GRAPH
    NOWAKOWSKI, R
    RIVAL, I
    COMBINATORICA, 1982, 2 (01) : 79 - 90
  • [30] THE LATTICE OF CONNECTED SUBGRAPHS OF A GRAPH
    STEELMAN, JH
    AMERICAN MATHEMATICAL MONTHLY, 1990, 97 (10): : 924 - 925