Covering a Graph with Densest Subgraphs

被引:0
|
作者
Riccardo Dondi [1 ]
Alexandru Popa [2 ]
机构
[1] Università degli Studi di Bergamo,Dipartimento di Lettere, Filosofia, Comunicazione
[2] University of Bucharest,Department of Computer Science
来源
La Matematica | 2024年 / 3卷 / 4期
关键词
Dense subgraphs; Graph algorithms; Approximation algorithms; Graph mining;
D O I
10.1007/s44007-024-00139-5
中图分类号
学科分类号
摘要
Finding densest subgraphs is a fundamental problem in graph mining, with several applications in different fields. In this paper, we consider two variants of the problem of covering a graph with k densest subgraphs, where k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}. The first variant aims to find a collection of k subgraphs of maximum density, the second variant asks for a set of k subgraphs such that they maximize an objective function that includes the sum of the subgraphs densities and a distance function, in order to differentiate the computed subgraphs. We show that the first variant of the problem is solvable in polynomial time, for any k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}. For the second variant, which is NP-hard for k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 3$$\end{document}, we present an approximation algorithm that achieves a factor of 37\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{7}$$\end{document}. The approximation algorithm is obtained by showing that a related problem, that of finding k distinct densest subgraphs can be solved in polynomial time.
引用
收藏
页码:1360 / 1378
页数:18
相关论文
共 50 条
  • [1] Computing the k densest subgraphs of a graph
    Dondi, Riccardo
    Hermelin, Danny
    INFORMATION PROCESSING LETTERS, 2023, 179
  • [2] COVERING A GRAPH BY TOPOLOGICAL COMPLETE SUBGRAPHS
    JORGENSEN, LK
    PYBER, L
    GRAPHS AND COMBINATORICS, 1990, 6 (02) : 161 - 171
  • [3] Deconstruct Densest Subgraphs
    Chang, Lijun
    Qiao, Miao
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 2747 - 2753
  • [4] Covering the edges of a graph by three odd subgraphs
    Matrai, Tamas
    JOURNAL OF GRAPH THEORY, 2006, 53 (01) : 75 - 82
  • [5] Graph Covering Using Bounded Size Subgraphs
    Gorain, Barun
    Patra, Shaswati
    Singh, Rishi Ranjan
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2023, 2023, 13947 : 415 - 426
  • [6] COVERING VERTEX SET OF A GRAPH WITH SUBGRAPHS OF SMALLER DEGREE
    LAWRENCE, J
    DISCRETE MATHEMATICS, 1978, 21 (01) : 61 - 68
  • [7] Local Triangle-Densest Subgraphs
    Samusevich, Raman
    Danisch, Maximilien
    Sozio, Mauro
    PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, 2016, : 33 - 40
  • [8] Spectral Relaxations and Fair Densest Subgraphs
    Anagnostopoulos, Aris
    Becchetti, Luca
    Fazzone, Adriano
    Menghini, Cristina
    Schwiegelshohn, Chris
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 35 - 44
  • [9] The covering threshold of a directed acyclic graph by directed acyclic subgraphs
    Yuster, Raphael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04):
  • [10] Top-k overlapping densest subgraphs
    Galbrun, Esther
    Gionis, Aristides
    Tatti, Nikolaj
    DATA MINING AND KNOWLEDGE DISCOVERY, 2016, 30 (05) : 1134 - 1165