Finding densest subgraphs is a fundamental problem in graph mining, with several applications in different fields. In this paper, we consider two variants of the problem of covering a graph with k densest subgraphs, where k≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k \ge 2$$\end{document}. The first variant aims to find a collection of k subgraphs of maximum density, the second variant asks for a set of k subgraphs such that they maximize an objective function that includes the sum of the subgraphs densities and a distance function, in order to differentiate the computed subgraphs. We show that the first variant of the problem is solvable in polynomial time, for any k≥2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k \ge 2$$\end{document}. For the second variant, which is NP-hard for k≥3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k \ge 3$$\end{document}, we present an approximation algorithm that achieves a factor of 37\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{3}{7}$$\end{document}. The approximation algorithm is obtained by showing that a related problem, that of finding k distinct densest subgraphs can be solved in polynomial time.