On big primitive divisors of Fibonacci numbers

被引:0
|
作者
Haojie Hong [1 ]
机构
[1] Hainan University,School of Mathematics and Statistics
关键词
Primitive divisor; Fibonacci number; Linear recurrence; -adic logarithmic form; 11B39; 11B37;
D O I
10.1007/s11139-025-01068-9
中图分类号
学科分类号
摘要
In this note, we prove that for any given positive integer κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}, when n is bigger than a constant explicitly depending on κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}, the n-th Fibonacci number has a primitive divisor not less than (κ+1)n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa +1) n-1$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Primitive divisors of elliptic divisibility sequences
    Everest, G
    Mclaren, G
    Ward, T
    JOURNAL OF NUMBER THEORY, 2006, 118 (01) : 71 - 89
  • [42] Fibonacci numbers and Lucas numbers in graphs
    Startek, Mariusz
    Wloch, Andrzej
    Wloch, Iwona
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) : 864 - 868
  • [43] Average of the Fibonacci Numbers
    Fatehizadeh, Amirali
    Yaqubi, Daniel
    JOURNAL OF INTEGER SEQUENCES, 2022, 25 (02)
  • [44] FIBONACCI NUMBERS IN DIATOMS
    BROUSSEAU, A
    FIBONACCI QUARTERLY, 1977, 15 (04): : 370 - 370
  • [45] ON THE RECIPROCALS OF THE FIBONACCI NUMBERS
    HOCHWALD, SH
    TONG, JC
    FIBONACCI QUARTERLY, 1993, 31 (03): : 246 - 250
  • [46] COMPLEX FIBONACCI NUMBERS
    HARMAN, CJ
    FIBONACCI QUARTERLY, 1981, 19 (01): : 82 - 86
  • [47] HYPERSPACES AND FIBONACCI NUMBERS
    HAASE, H
    FIBONACCI QUARTERLY, 1993, 31 (02): : 158 - 161
  • [48] The (Fabulous) Fibonacci Numbers
    Miocevic, Ljubica
    EUROPEAN LEGACY-TOWARD NEW PARADIGMS, 2010, 15 (01): : 109 - 110
  • [49] PRIMITIVE DIVISORS OF LUCAS AND LEHMER SEQUENCES
    VOUTIER, PM
    MATHEMATICS OF COMPUTATION, 1995, 64 (210) : 869 - 888
  • [50] Iterated Fibonacci numbers
    DiSario, R
    FIBONACCI QUARTERLY, 2003, 41 (04): : 382 - 382