On big primitive divisors of Fibonacci numbers

被引:0
|
作者
Haojie Hong [1 ]
机构
[1] Hainan University,School of Mathematics and Statistics
关键词
Primitive divisor; Fibonacci number; Linear recurrence; -adic logarithmic form; 11B39; 11B37;
D O I
10.1007/s11139-025-01068-9
中图分类号
学科分类号
摘要
In this note, we prove that for any given positive integer κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}, when n is bigger than a constant explicitly depending on κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}, the n-th Fibonacci number has a primitive divisor not less than (κ+1)n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa +1) n-1$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Primitive divisors in arithmetic dynamics
    Ingram, Patrick
    Silverman, Joseph H.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 : 289 - 302
  • [22] Fibonacci numbers
    de Villiers, Michael
    MATHEMATICAL GAZETTE, 2008, 92 (523): : 181 - 183
  • [23] THE FIBONACCI NUMBERS
    SAFRAN, C
    M D COMPUTING, 1991, 8 (04): : 204 - 207
  • [24] Fibonacci numbers
    Ribenboim, P
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2002, 5A (02): : 329 - 353
  • [25] The primitive cohomology of theta divisors
    Izadi, Elham
    Wang, Jie
    HODGE THEORY AND CLASSICAL ALGEBRAIC GEOMETRY, 2015, 647 : 79 - 90
  • [26] δ-FIBONACCI NUMBERS
    Witula, Roman
    Slota, Damian
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2009, 3 (02) : 310 - 329
  • [27] Fibonacci numbers
    Fredric T. Howard
    The Mathematical Intelligencer, 2004, 26 (1) : 65 - 65
  • [28] Generalized iterations and primitive divisors
    Wakefield, Nathan
    JOURNAL OF NUMBER THEORY, 2016, 159 : 273 - 294
  • [29] FIBONACCI NUMBERS
    DEALMEIDAAZEVEDO, JC
    FIBONACCI QUARTERLY, 1979, 17 (02): : 162 - 165
  • [30] DIVISORS OF MERSENNE NUMBERS
    WAGSTAFF, SS
    MATHEMATICS OF COMPUTATION, 1983, 40 (161) : 385 - 397