On big primitive divisors of Fibonacci numbers

被引:0
|
作者
Haojie Hong [1 ]
机构
[1] Hainan University,School of Mathematics and Statistics
关键词
Primitive divisor; Fibonacci number; Linear recurrence; -adic logarithmic form; 11B39; 11B37;
D O I
10.1007/s11139-025-01068-9
中图分类号
学科分类号
摘要
In this note, we prove that for any given positive integer κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}, when n is bigger than a constant explicitly depending on κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}, the n-th Fibonacci number has a primitive divisor not less than (κ+1)n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa +1) n-1$$\end{document}.
引用
收藏
相关论文
共 50 条