Machine-learning based prediction of hydrogen/methane mixture solubility in brine

被引:1
|
作者
Altalbawy, Farag M. A. [1 ]
Al-saray, Mustafa Jassim [2 ]
Vaghela, Krunal [3 ]
Nazarova, Nodira [4 ]
Praveen, Raja K. N. [5 ]
Kumari, Bharti [6 ]
Kaur, Kamaljeet [7 ]
Alsaadi, Salima B. [8 ]
Jumaa, Sally Salih [9 ]
Al-Ani, Ahmed Muzahem [10 ]
Al-Farouni, Mohammed [11 ,12 ,13 ]
Khalid, Ahmad [14 ]
机构
[1] Univ Tabuk, Univ Coll Duba, Dept Chem, Tabuk, Saudi Arabia
[2] AL Manara Coll Med Sci, Dept Anesthesia Tech, Maysan, Iraq
[3] Marwadi Univ, Res Ctr, Fac Engn & Technol, Dept Mech Engn, Rajkot 360003, Gujarat, India
[4] Tashkent State Pedag Univ, Tashkent 100185, Uzbekistan
[5] JAIN Deemed Univ, Dept Comp Sci & Engn, Bangalore, Karnataka, India
[6] NIMS Univ Rajasthan, NIMS Sch Petr & Chem Engn, Jaipur, India
[7] Chandigarh Grp Coll Jhanjeri, Chandigarh Coll Engn, Dept Comp Sci & Engn, Mohali 140307, Punjab, India
[8] Al Hadi Univ Coll, Dept Dent, Baghdad 10011, Iraq
[9] Natl Univ Sci & Technol, Dept Med Engn, Dhi Qar, Iraq
[10] AL Nisour Univ Coll, Dept Med Engn, Baghdad, Iraq
[11] Islamic Univ, Dept Comp Tech Engn, Coll Tech Engn, Najaf, Iraq
[12] Islamic Univ Al Diwaniyah, Coll Tech Engn, Dept Comp Tech Engn, Al Diwaniyah, Iraq
[13] Islamic Univ Babylon, Coll Tech Engn, Dept Comp Tech Engn, Babylon, Iraq
[14] Sanaa Univ, Fac Engn, Sanaa, Yemen
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Machine learning; Data-driven models; Relevancy factor; Outlier detection; STORAGE; ANFIS; OPTIMIZATION; MODELS; GAS;
D O I
10.1038/s41598-024-80959-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With regard to underground hydrogen storage projects, presuming that the hydrogen storage site has served as a repository for methane, the coexistence of a blend of methane and hydrogen is anticipated during the incipient stage of hydrogen storage. Therefore, the solubility of hydrogen/methane mixtures in brine becomes imperative. On the contrary, laboratory tasks of such measurements are hard because of its extreme corrosion ability and flammability, hence modeling methodologies are highly preferred. Therefore, in this study, we seek to create accurate data-driven intelligent models based upon laboratory data using hybrid models of adaptive neuro-fuzzy inference system (ANFIS) and least squares support vector machine (LSSVM) optimized with either particle swarm optimization (PSO), genetic algorithm (GA) and coupled simulated annealing (CSA) to predict hydrogen/methane mixture solubility in brine as a function of pressure, temperature, hydrogen mole fraction in hydrogen/methane mixture and brine salt concentration. The results indicate that almost all the gathered experimental data are technically suitable for the model development. The sensitivity study shows that pressure and hydrogen mole fraction in the mixture are strongly related with the solubility data with direct and indirect effects, respectively. The analyses of evaluation indexes and graphical methods indicates that the developed LSSVM-GA and LSSVM-CSA models are the most accurate as they exhibit the lowest AARE% and MSE values and the highest R-squared values. These findings show that machine learning methods could be a useful tool for predicting hydrogen solubility in brine encountered in underground hydrogen storage projects, aiding in the advancement of intelligent, affordable, and secure hydrogen storage technologies.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Kinetic solubility: Experimental and machine-learning modeling perspectives
    Baybekov, Shamkhal
    Llompart, Pierre
    Marcou, Gilles
    Gizzi, Patrick
    Galzi, Jean-Luc
    Ramos, Pascal
    Saurel, Olivier
    Bourban, Claire
    Minoletti, Claire
    Varnek, Alexandre
    MOLECULAR INFORMATICS, 2024, 43 (02)
  • [12] Hydrogen solubility in aromatic/cyclic compounds: Prediction by different machine learning techniques
    Jiang, Yongchun
    Zhang, Guangfen
    Wang, Juanjuan
    Vaferi, Behzad
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (46) : 23591 - 23602
  • [13] Machine-Learning Based Prediction Model for Prognosis of IgA Nephropathy Patients
    Park, Sehoon
    Koh, Eun Sil
    Baek, Chung Hee
    Kim, Yong Chul
    Lee, Jung Pyo
    Kim, Dong Ki
    Han, Seung Hyeok
    Chin, Ho Jun
    Joo, Kwon Wook
    Kim, Yon Su
    Lee, Hajeong
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (11): : 800 - 801
  • [14] Holistic Prediction of the pKa in Diverse Solvents Based on a Machine-Learning Approach
    Yang, Qi
    Li, Yao
    Yang, Jin-Dong
    Liu, Yidi
    Zhang, Long
    Luo, Sanzhong
    Cheng, Jin-Pei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (43) : 19282 - 19291
  • [15] Machine-learning based spatiotemporal prediction of soil moisture in a grassland hillslope
    Houben, Timo
    Ebeling, Pia
    Khurana, Swamini
    Schmid, Julia Sabine
    Boog, Johannes
    VADOSE ZONE JOURNAL, 2025, 24 (02)
  • [16] Groundwater Prediction Using Machine-Learning Tools
    Hussein, Eslam A.
    Thron, Christopher
    Ghaziasgar, Mehrdad
    Bagula, Antoine
    Vaccari, Mattia
    ALGORITHMS, 2020, 13 (11)
  • [17] Advancing interpretability of machine-learning prediction models
    Trenary, Laurie
    DelSole, Timothy
    ENVIRONMENTAL DATA SCIENCE, 2022, 1
  • [18] Prediction of the Sulfate Attack Resistance of Concrete Based on Machine-Learning Algorithms
    Li, Yue
    Shi, Junjie
    Shen, Jiale
    Jin, Kaikai
    Fan, Mengtian
    Liu, Xiaolong
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2024, 38 (06)
  • [19] Prediction of prognosis in patients with systemic sclerosis based on a machine-learning model
    Zheng, Yan
    Jin, Wei
    Zheng, Zhaohui
    Zhang, Kui
    Jia, Junfeng
    Lei, Cong
    Wang, Weitao
    Zhu, Ping
    CLINICAL RHEUMATOLOGY, 2024, 43 (08) : 2573 - 2584
  • [20] Anxiety onset in adolescents: a machine-learning prediction
    Alice V. Chavanne
    Marie Laure Paillère Martinot
    Jani Penttilä
    Yvonne Grimmer
    Patricia Conrod
    Argyris Stringaris
    Betteke van Noort
    Corinna Isensee
    Andreas Becker
    Tobias Banaschewski
    Arun L. W. Bokde
    Sylvane Desrivières
    Herta Flor
    Antoine Grigis
    Hugh Garavan
    Penny Gowland
    Andreas Heinz
    Rüdiger Brühl
    Frauke Nees
    Dimitri Papadopoulos Orfanos
    Tomáš Paus
    Luise Poustka
    Sarah Hohmann
    Sabina Millenet
    Juliane H. Fröhner
    Michael N. Smolka
    Henrik Walter
    Robert Whelan
    Gunter Schumann
    Jean-Luc Martinot
    Eric Artiges
    Molecular Psychiatry, 2023, 28 : 639 - 646