Kinetic solubility: Experimental and machine-learning modeling perspectives

被引:0
|
作者
Baybekov, Shamkhal [1 ]
Llompart, Pierre [1 ,2 ]
Marcou, Gilles [1 ]
Gizzi, Patrick [4 ]
Galzi, Jean-Luc [3 ,5 ]
Ramos, Pascal [6 ]
Saurel, Olivier [6 ]
Bourban, Claire [4 ]
Minoletti, Claire [2 ]
Varnek, Alexandre [1 ,7 ]
机构
[1] Univ Strasbourg, Inst Le Bel, Lab Chemoinformat UMR 7140 CNRS, Strasbourg, France
[2] Sanofi, IDD CADD, Vitry Sur Seine, France
[3] Univ Strasbourg, Ecole Super Biotechnol Strasbourg, Biotechnol & Signalisat Cellulaire UMR 7242 CNRS, Illkirch Graffenstaden, France
[4] Univ Strasbourg, Plateforme Chim Biol Integrat Strasbourg UAR 3286, Illkirch Graffenstaden, France
[5] ENSCM 240, ChemBioFrance Chimiotheque Natl UAR 3035, Montpellier, France
[6] Univ Toulouse III Paul Sabatier UT3, Univ Toulouse, Inst Pharmacol & Biol Struct IPBS, CNRS, Toulouse, France
[7] Univ Strasbourg, Inst Le Bel, Lab Chemoinformat UMR 7140 CNRS, 4 Rue Blaise Pascal, F-67081 Strasbourg, France
关键词
comparison; kinetic solubility; QSPR; thermodynamic solubility; DRUG DISCOVERY; FRAGMENT;
D O I
10.1002/minf.202300216
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Kinetic aqueous or buffer solubility is important parameter measuring suitability of compounds for high throughput assays in early drug discovery while thermodynamic solubility is reserved for later stages of drug discovery and development. Kinetic solubility is also considered to have low inter-laboratory reproducibility because of its sensitivity to protocol parameters [1]. Presumably, this is why little efforts have been put to build QSPR models for kinetic in comparison to thermodynamic aqueous solubility. Here, we investigate the reproducibility and modelability of kinetic solubility assays. We first analyzed the relationship between kinetic and thermodynamic solubility data, and then examined the consistency of data from different kinetic assays. In this contribution, we report differences between kinetic and thermodynamic solubility data that are consistent with those reported by others [1, 2] and good agreement between data from different kinetic solubility campaigns in contrast to general expectations. The latter is confirmed by achieving high performing QSPR models trained on merged kinetic solubility datasets. The poor performance of QSPR model trained on thermodynamic solubility when applied to kinetic solubility dataset reinforces the conclusion that kinetic and thermodynamic solubilities do not correlate: one cannot be used as an ersatz for the other. This encourages for building predictive models for kinetic solubility. The kinetic solubility QSPR model developed in this study is freely accessible through the Predictor web service of the Laboratory of Chemoinformatics (). This contribution presents a new publicly available dataset of kinetic solubility for 56k compounds, a comparison of kinetic and thermodynamic measurements and new publicly available QSPR models.image
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A new machine-learning based method for parameter imaging and kinetic modeling of PET data
    Pan, L.
    Mikolajczyk, K.
    Strauss, L.
    Haberkorn, U.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2007, 34 : S348 - S348
  • [2] Machine-learning based prediction of hydrogen/methane mixture solubility in brine
    Altalbawy, Farag M. A.
    Al-saray, Mustafa Jassim
    Vaghela, Krunal
    Nazarova, Nodira
    Praveen, Raja K. N.
    Kumari, Bharti
    Kaur, Kamaljeet
    Alsaadi, Salima B.
    Jumaa, Sally Salih
    Al-Ani, Ahmed Muzahem
    Al-Farouni, Mohammed
    Khalid, Ahmad
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] Interactive Reconstructive Student Modeling: A Machine-Learning Approach
    International Journal of Human-Computer Interaction, 7 (04):
  • [4] Machine-Learning Modeling of Elemental Ferroelectric Bismuth Monolayer
    Zhang, Yanxing
    Ouyang, Xinjian
    Fang, Dangqi
    Hu, Shaojie
    Liu, Laijun
    Wang, Dawei
    PHYSICAL REVIEW LETTERS, 2024, 133 (26)
  • [5] Machine-Learning Modeling of Asphalt Crack Treatment Effectiveness
    Huang, Zhenhua
    Manzo, Maurizio
    Cai, Liping
    JOURNAL OF TRANSPORTATION ENGINEERING PART B-PAVEMENTS, 2021, 147 (02)
  • [6] Using machine-learning methods for musical style modeling
    Dubnov, S
    Assayag, G
    Lartillot, O
    Bejerano, G
    COMPUTER, 2003, 36 (10) : 73 - +
  • [7] Interactive reconstructive student modeling: A machine-learning approach
    Mitrovic, A
    DjordjevicKajan, S
    INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION, 1995, 7 (04) : 385 - 401
  • [8] An iterative machine-learning framework for RANS turbulence modeling
    Liu, Weishuo
    Fang, Jian
    Rolfo, Stefano
    Moulinec, Charles
    Emerson, David R.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2021, 90
  • [9] Machine learning model for prediction of drug solubility in supercritical solvent: Modeling and experimental validation
    An, Feifei
    Sayed, Biju Theruvil
    Parra, Rosario Mireya Romero
    Hamad, Mohammed Haider
    Sivaraman, R.
    Foumani, Zahra Zanjani
    Rushchitc, Anastasia Andreevna
    El-Maghawry, Enas
    Alzhrani, Rami M.
    Alshehri, Sameer
    AboRas, Kareem M.
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 363
  • [10] Modeling the Vibrational Relaxation Rate Using Machine-Learning Methods
    Bushmakova, M. A.
    Kustova, E. V.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2022, 55 (01) : 87 - 95