Dmixnet: a dendritic multi-layered perceptron architecture for image recognition

被引:0
|
作者
Weixiang Xu [1 ]
Yaotong Song [1 ]
Shubham Gupta [2 ]
Dongbao Jia [3 ]
Jun Tang [4 ]
Zhenyu Lei [1 ]
Shangce Gao [1 ]
机构
[1] University of Toyama,Faculty of Engineering
[2] Motilal Nehru National Institute of Technology Allahabad,Department of Mathematic
[3] Jiangsu Ocean University,School of Computer Engineering
[4] Wicresoft Co Ltd,undefined
关键词
MLP-mixer; Dendritic neural unit; Dendritic channel module; Dendritic classifier; Image recognition;
D O I
10.1007/s10462-025-11123-y
中图分类号
学科分类号
摘要
In the field of image recognition, the all-MLP architecture (MLP-Mixer) shows superior performance. However, the current MLP-Mixer is solely based on fully connected layers. The nonlinear capability of fully connected layers is relatively weak, and their simple stacked structure has limitations under complex conditions. Therefore, inspired by the diversity of neurons in the human brain, we propose an innovative DMixNet, a dendritic multi-layered perceptron architecture. Rooted in the theory of dendritic neurons from neuroscience, we propose a dendritic neural unit (DNU) that enhances DMixNet with stronger biological interpretability and more robust nonlinear processing capabilities. The flexibility of dendritic structures allows the DNU to adjust its architecture to achieve different functionalities. Based on the DNU, we propose a novel channel fusion network \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {E}$$\end{document} and a dendritic classifier \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {C}$$\end{document}. The \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {E}$$\end{document} substitutes the traditional two fully connected layers as the channel mixer, constructing a dendritic mixer layer to enhance the fusion capability of channel information within the entire framework. Meanwhile, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {DNU}_\text {C}$$\end{document} replaces the traditional linear classifier, effectively improving the model’s classification performance. Experimental results demonstrate that DMixNet achieves improvements of 2.13%, 4.79%, 4.71%, 23.14% on the CIFAR-10, CIFAR-100, Tiny-ImageNet and COIL-100 benchmark image recognition datasets, respectively, as well as a 14.78% enhancement on the medical image classification dataset PathMNIST, outperforming other state-of-the-art architectures. Code is available at https://github.com/KarilynXu/DMixNet.
引用
收藏
相关论文
共 50 条
  • [1] Clustering with multi-layered perceptron
    Chatterjee, Ankita
    Saha, Jayasree
    Mukherjee, Jayanta
    PATTERN RECOGNITION LETTERS, 2022, 155 : 92 - 99
  • [2] Multi-layered perceptron as a model for the pupillary pathway
    Fink, W
    Wilhelm, H
    Wilhelm, B
    Schmid, EW
    GERMAN JOURNAL OF OPHTHALMOLOGY, 1996, 5 (03) : 160 - 167
  • [3] Effect of Additive Noise for Multi-Layered Perceptron with AutoEncoders
    Sabri, Motaz
    Kurita, Takio
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (07) : 1494 - 1504
  • [4] Multi-layered image compression
    Meyer, FG
    Averbuch, AZ
    Stromberg, JO
    Coifman, RR
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VI, 1998, 3458 : 128 - 139
  • [5] MULTI-LAYERED IMAGE RETARGETING
    Sugimoto, Shiori
    Shimizu, Shinya
    Kimata, Hideaki
    Kojima, Akira
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 3001 - 3004
  • [6] Modified multi-layered perceptron applied to packing and covering problems
    Labib, Richard
    Assadi, Reza
    NEURAL COMPUTING & APPLICATIONS, 2007, 16 (02): : 173 - 186
  • [7] Modified multi-layered perceptron applied to packing and covering problems
    Richard Labib
    Reza Assadi
    Neural Computing and Applications, 2007, 16 : 173 - 186
  • [8] Multi-layered handwriting recognition approach
    Malaviya, A
    Peters, L
    FUZZY SETS AND SYSTEMS, 1999, 104 (02) : 219 - 227
  • [9] The License Plate Recognition System with Easy Portability Based on Multi-Layered Architecture
    Liu, Xiaohua
    2014 INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND AUTOMATION (ICMEA), 2014, : 390 - 394
  • [10] Multi-layered Gesture Recognition with Kinect
    Jiang, Feng
    Zhang, Shengping
    Wu, Shen
    Gao, Yang
    Zhao, Debin
    JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 227 - 254