Characterization of tumour heterogeneity through segmentation-free representation learning on multiplexed imaging data

被引:0
|
作者
Tan, Jimin [1 ,2 ,3 ,4 ,5 ]
Le, Hortense [4 ]
Deng, Jiehui [6 ]
Liu, Yingzhuo [6 ]
Hao, Yuan [7 ]
Hollenberg, Michelle [1 ,2 ]
Liu, Wenke [1 ,2 ]
Wang, Joshua M. [1 ,2 ]
Xia, Bo [5 ,8 ]
Ramaswami, Sitharam [9 ]
Mezzano, Valeria [10 ]
Loomis, Cynthia [10 ]
Murrell, Nina [4 ,7 ]
Moreira, Andre L. [4 ]
Cho, Kyunghyun [11 ,12 ,13 ]
Pass, Harvey I. [14 ]
Wong, Kwok-Kin [6 ]
Ban, Yi [6 ]
Neel, Benjamin G. [6 ]
Tsirigos, Aristotelis [3 ,4 ,7 ]
Fenyo, David [1 ,2 ]
机构
[1] NYU Grossman Sch Med, Inst Syst Genet, New York, NY 10016 USA
[2] NYU Grossman Sch Med, Dept Biochem & Mol Pharmacol, New York, NY 10016 USA
[3] NYU Grossman Sch Med, Dept Med, Div Precis Med, New York, NY 10016 USA
[4] NYU Grossman Sch Med, Dept Pathol, New York, NY 10016 USA
[5] Broad Inst MIT & Harvard, Gene Regulat Observ, Cambridge, MA 02142 USA
[6] NYU Grossman Sch Med, Laura & Isaac Perlmutter Canc Ctr, NYU Langone Hlth, New York, NY USA
[7] NYU Grossman Sch Med, Div Adv Res Technol, Appl Bioinformat Labs, NYU Langone Hlth, New York, NY 10016 USA
[8] Harvard Univ, Soc Fellows, Cambridge, MA USA
[9] NYU Langone Hlth, Genome Technol Ctr, New York, NY USA
[10] NYU Grossman Sch Med, Div Adv Res Technol, Expt Pathol Res Lab, New York, NY USA
[11] NYU, Ctr Data Sci, New York, NY USA
[12] NYU, Courant Inst Math Sci, Dept Comp Sci, New York, NY USA
[13] Genentech Inc, Prescient Design, New York, NY USA
[14] NYU Grossman Sch Med, Dept Cardiothorac Surg, New York, NY USA
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION; B-CELLS; SURVIVAL; IMMUNOTHERAPY; PEMBROLIZUMAB; IPILIMUMAB;
D O I
10.1038/s41551-025-01348-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
High-dimensional multiplexed imaging can reveal the spatial organization of tumour tissues at the molecular level. However, owing to the scale and information complexity of the imaging data, it is challenging to discover and thoroughly characterize the heterogeneity of tumour microenvironments. Here we show that self-supervised representation learning on data from imaging mass cytometry can be leveraged to distinguish morphological differences in tumour microenvironments and to precisely characterize distinct microenvironment signatures. We used self-supervised masked image modelling to train a vision transformer that directly takes high-dimensional multiplexed mass-cytometry images. In contrast with traditional spatial analyses relying on cellular segmentation, the vision transformer is segmentation-free, uses pixel-level information, and retains information on the local morphology and biomarker distribution. By applying the vision transformer to a lung-tumour dataset, we identified and validated a monocytic signature that is associated with poor prognosis.
引用
收藏
页码:405 / 419
页数:19
相关论文
共 50 条
  • [41] Brain Tumour Segmentation from Multispectral MR Image Data Using Ensemble Learning Methods
    Gyorfi, Agnes
    Kovacs, Levente
    Szilagyi, Laszlo
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS (CIARP 2019), 2019, 11896 : 326 - 335
  • [42] Machine learning based brain tumour segmentation on limited data using local texture and abnormality
    Bonte, Stijn
    Goethals, Ingeborg
    Van Holen, Roel
    COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 98 : 39 - 47
  • [43] Light field imaging through a single multimode fiber for OAM-multiplexed data transmission
    Zhao, Qian
    Yu, Pan-Pan
    Liu, Yi-Fan
    Wang, Zi-Qiang
    Li, Yin-Mei
    Gong, Lei
    APPLIED PHYSICS LETTERS, 2020, 116 (18)
  • [44] Automated machine-learning-based image segmentation plus quantitative, multiplexed imaging for rapid, accurate molecular phenotyping
    Levenson, Richard
    Gossage, Kirk W.
    Hope, Tyna
    Hoyt, Clifford C.
    Gardner, Humphrey
    FASEB JOURNAL, 2008, 22
  • [45] Machine Learning for Deconvolution and Segmentation of Hyperspectral Imaging Data from Biopharmaceutical Resins
    Wei, Hong
    Smith, Joseph P.
    MOLECULAR PHARMACEUTICS, 2024, 21 (11) : 5565 - 5576
  • [46] eLIMS: Ensemble Learning-Based Spatial Segmentation of Mass Spectrometry Imaging to Explore Metabolic Heterogeneity
    Shah, Mudassir
    Guo, Lei
    Xu, Xiangnan
    Deng, Lingli
    Lu, Keyi
    Dong, Jiyang
    Zhao, Chao
    Xu, Jingjing
    JOURNAL OF PROTEOME RESEARCH, 2024, 23 (08) : 3088 - 3095
  • [47] Fluctuation Free Matrix Representation Based Random Data Partitioning Through HDMR
    Tunga, M. Alper
    Demiralp, Metin
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009 (ICCMSE 2009), 2012, 1504 : 792 - 795
  • [48] Discrete Representation Learning for Modeling Imaging-based Spatial Transcriptomics Data
    Yarlagadda, Dig Vijay Kumar
    Massagu, Joan
    Leslie, Christina
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 3848 - 3857
  • [49] Deep representation learning for domain adaptable classification of infrared spectral imaging data
    Raulf, Arne P.
    Butke, Joshua
    Kuepper, Claus
    Grosserueschkamp, Frederik
    Gerwert, Klaus
    Mosig, Axel
    BIOINFORMATICS, 2020, 36 (01) : 287 - 294
  • [50] Automated learning of glaucomatous visual fields from OCT images using a comprehensive, segmentation-free 3D convolutional neural network model
    Makoto Koyama
    Yuta Ueno
    Yoshikazu Ito
    Tetsuro Oshika
    Masaki Tanito
    Scientific Reports, 15 (1)