Characterization of tumour heterogeneity through segmentation-free representation learning on multiplexed imaging data

被引:0
|
作者
Tan, Jimin [1 ,2 ,3 ,4 ,5 ]
Le, Hortense [4 ]
Deng, Jiehui [6 ]
Liu, Yingzhuo [6 ]
Hao, Yuan [7 ]
Hollenberg, Michelle [1 ,2 ]
Liu, Wenke [1 ,2 ]
Wang, Joshua M. [1 ,2 ]
Xia, Bo [5 ,8 ]
Ramaswami, Sitharam [9 ]
Mezzano, Valeria [10 ]
Loomis, Cynthia [10 ]
Murrell, Nina [4 ,7 ]
Moreira, Andre L. [4 ]
Cho, Kyunghyun [11 ,12 ,13 ]
Pass, Harvey I. [14 ]
Wong, Kwok-Kin [6 ]
Ban, Yi [6 ]
Neel, Benjamin G. [6 ]
Tsirigos, Aristotelis [3 ,4 ,7 ]
Fenyo, David [1 ,2 ]
机构
[1] NYU Grossman Sch Med, Inst Syst Genet, New York, NY 10016 USA
[2] NYU Grossman Sch Med, Dept Biochem & Mol Pharmacol, New York, NY 10016 USA
[3] NYU Grossman Sch Med, Dept Med, Div Precis Med, New York, NY 10016 USA
[4] NYU Grossman Sch Med, Dept Pathol, New York, NY 10016 USA
[5] Broad Inst MIT & Harvard, Gene Regulat Observ, Cambridge, MA 02142 USA
[6] NYU Grossman Sch Med, Laura & Isaac Perlmutter Canc Ctr, NYU Langone Hlth, New York, NY USA
[7] NYU Grossman Sch Med, Div Adv Res Technol, Appl Bioinformat Labs, NYU Langone Hlth, New York, NY 10016 USA
[8] Harvard Univ, Soc Fellows, Cambridge, MA USA
[9] NYU Langone Hlth, Genome Technol Ctr, New York, NY USA
[10] NYU Grossman Sch Med, Div Adv Res Technol, Expt Pathol Res Lab, New York, NY USA
[11] NYU, Ctr Data Sci, New York, NY USA
[12] NYU, Courant Inst Math Sci, Dept Comp Sci, New York, NY USA
[13] Genentech Inc, Prescient Design, New York, NY USA
[14] NYU Grossman Sch Med, Dept Cardiothorac Surg, New York, NY USA
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION; B-CELLS; SURVIVAL; IMMUNOTHERAPY; PEMBROLIZUMAB; IPILIMUMAB;
D O I
10.1038/s41551-025-01348-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
High-dimensional multiplexed imaging can reveal the spatial organization of tumour tissues at the molecular level. However, owing to the scale and information complexity of the imaging data, it is challenging to discover and thoroughly characterize the heterogeneity of tumour microenvironments. Here we show that self-supervised representation learning on data from imaging mass cytometry can be leveraged to distinguish morphological differences in tumour microenvironments and to precisely characterize distinct microenvironment signatures. We used self-supervised masked image modelling to train a vision transformer that directly takes high-dimensional multiplexed mass-cytometry images. In contrast with traditional spatial analyses relying on cellular segmentation, the vision transformer is segmentation-free, uses pixel-level information, and retains information on the local morphology and biomarker distribution. By applying the vision transformer to a lung-tumour dataset, we identified and validated a monocytic signature that is associated with poor prognosis.
引用
收藏
页码:405 / 419
页数:19
相关论文
共 50 条
  • [31] Cognitive Imaging: Using Knowledge Representation for Reliable Segmentation of MR Angiography Data
    Rayz, Julia Taylor
    Rayz, Vitaliy L.
    Raskin, Victor
    2017 IEEE 16TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), 2017, : 37 - 42
  • [32] Optic Cup Characterization through Sparse Representation and Dictionary Learning
    Naranjo, Valery
    Saez, Carlos J.
    Morales, Sandra
    Engan, Kjersti
    Gomez, Soledad
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 1688 - 1692
  • [33] Delineating spatial cell-cell interactions in the solid tumour microenvironment through the lens of highly multiplexed imaging
    Cohn, David E.
    Forder, Aisling
    Marshall, Erin A.
    Vucic, Emily A.
    Stewart, Greg L.
    Noureddine, Kouther
    Lockwood, William W.
    MacAulay, Calum E.
    Guillaud, Martial
    Lam, Wan L.
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [34] Handling data heterogeneity with generative replay in collaborative learning for medical imaging
    Qu, Liangqiong
    Balachandar, Niranjan
    Zhang, Miao
    Rubin, Daniel
    MEDICAL IMAGE ANALYSIS, 2022, 78
  • [35] Semantic Data Mapping on E-Learning Usage Index Tool to Handle Heterogeneity of Data Representation
    Yunianta, Arda
    Yusof, Norazah
    Othman, Mohd Shahizan
    Aziz, Abdul
    Dengen, Nataniel
    Ugiarto, Muhammad
    Haeruddin
    Angelina, Joan
    JURNAL TEKNOLOGI, 2014, 69 (05):
  • [36] Segmentation-Free OCT-Volume-Based Deep Learning Model Improves Point-ise Visual Field Threshold Estimation
    Chen, Zhiqi
    Shemuelian, Eitan
    Zheng, Lei
    Wollstein, Gadi
    Wang, Yao
    Ishikawa, Hiroshi
    Schuman, Joel S.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [37] Cardiac Segmentation on Magnetic Resonance Imaging Data with Deep Learning Methods
    Razumov, A. A.
    Tya-Shen-Tin, Y. N.
    Ushenin, K. S.
    PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019), 2019, 2174
  • [38] Improving Multi-Criteria Chinese Word Segmentation through Learning Sentence Representation
    Lin, Chun-Yi
    Lin, Ying-Jia
    Li, Yi-Ting
    Yeh, Chia-Jen
    Yang, Ching-Wen
    Kao, Hung-Yu
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 12756 - 12763
  • [39] Graph representation learning of tumor topology from spatial imaging data
    Ceglia, Nicholas
    Freeman, Samuel S.
    Pourmaleki, Maryam
    McPherson, Andrew
    Shah, Sohrab P.
    CANCER RESEARCH, 2023, 83 (07)
  • [40] A 2-DIMENSIONAL SEGMENTATION-FREE LEARNING RECOGNITION SYSTEM BY A CELLULAR AUTOMATON ARRAY USING EIGENVECTORS OF THE 2ND MOMENT MATRIX
    MATSUI, S
    OKUMOTO, T
    IEICE TRANSACTIONS ON COMMUNICATIONS ELECTRONICS INFORMATION AND SYSTEMS, 1991, 74 (08): : 2432 - 2440