Characterization of tumour heterogeneity through segmentation-free representation learning on multiplexed imaging data

被引:0
|
作者
Tan, Jimin [1 ,2 ,3 ,4 ,5 ]
Le, Hortense [4 ]
Deng, Jiehui [6 ]
Liu, Yingzhuo [6 ]
Hao, Yuan [7 ]
Hollenberg, Michelle [1 ,2 ]
Liu, Wenke [1 ,2 ]
Wang, Joshua M. [1 ,2 ]
Xia, Bo [5 ,8 ]
Ramaswami, Sitharam [9 ]
Mezzano, Valeria [10 ]
Loomis, Cynthia [10 ]
Murrell, Nina [4 ,7 ]
Moreira, Andre L. [4 ]
Cho, Kyunghyun [11 ,12 ,13 ]
Pass, Harvey I. [14 ]
Wong, Kwok-Kin [6 ]
Ban, Yi [6 ]
Neel, Benjamin G. [6 ]
Tsirigos, Aristotelis [3 ,4 ,7 ]
Fenyo, David [1 ,2 ]
机构
[1] NYU Grossman Sch Med, Inst Syst Genet, New York, NY 10016 USA
[2] NYU Grossman Sch Med, Dept Biochem & Mol Pharmacol, New York, NY 10016 USA
[3] NYU Grossman Sch Med, Dept Med, Div Precis Med, New York, NY 10016 USA
[4] NYU Grossman Sch Med, Dept Pathol, New York, NY 10016 USA
[5] Broad Inst MIT & Harvard, Gene Regulat Observ, Cambridge, MA 02142 USA
[6] NYU Grossman Sch Med, Laura & Isaac Perlmutter Canc Ctr, NYU Langone Hlth, New York, NY USA
[7] NYU Grossman Sch Med, Div Adv Res Technol, Appl Bioinformat Labs, NYU Langone Hlth, New York, NY 10016 USA
[8] Harvard Univ, Soc Fellows, Cambridge, MA USA
[9] NYU Langone Hlth, Genome Technol Ctr, New York, NY USA
[10] NYU Grossman Sch Med, Div Adv Res Technol, Expt Pathol Res Lab, New York, NY USA
[11] NYU, Ctr Data Sci, New York, NY USA
[12] NYU, Courant Inst Math Sci, Dept Comp Sci, New York, NY USA
[13] Genentech Inc, Prescient Design, New York, NY USA
[14] NYU Grossman Sch Med, Dept Cardiothorac Surg, New York, NY USA
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION; B-CELLS; SURVIVAL; IMMUNOTHERAPY; PEMBROLIZUMAB; IPILIMUMAB;
D O I
10.1038/s41551-025-01348-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
High-dimensional multiplexed imaging can reveal the spatial organization of tumour tissues at the molecular level. However, owing to the scale and information complexity of the imaging data, it is challenging to discover and thoroughly characterize the heterogeneity of tumour microenvironments. Here we show that self-supervised representation learning on data from imaging mass cytometry can be leveraged to distinguish morphological differences in tumour microenvironments and to precisely characterize distinct microenvironment signatures. We used self-supervised masked image modelling to train a vision transformer that directly takes high-dimensional multiplexed mass-cytometry images. In contrast with traditional spatial analyses relying on cellular segmentation, the vision transformer is segmentation-free, uses pixel-level information, and retains information on the local morphology and biomarker distribution. By applying the vision transformer to a lung-tumour dataset, we identified and validated a monocytic signature that is associated with poor prognosis.
引用
收藏
页码:405 / 419
页数:19
相关论文
共 50 条
  • [21] Graph Constrained Data Representation Learning for Human Motion Segmentation
    Dimiccoli, Mariella
    Garrido, Lluis
    Rodriguez-Corominas, Guillem
    Wendt, Herwig
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 1440 - 1449
  • [22] Quantification of Retinal Nerve Fibre Layer Thickness on Optical Coherence Tomography with a Deep Learning Segmentation-Free Approach
    Eduardo B. Mariottoni
    Alessandro A. Jammal
    Carla N. Urata
    Samuel I. Berchuck
    Atalie C. Thompson
    Tais Estrela
    Felipe A. Medeiros
    Scientific Reports, 10
  • [23] Federated Learning for Data and Model Heterogeneity in Medical Imaging
    Madni, Hussain Ahmad
    Umer, Rao Muhammad
    Foresti, Gian Luca
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2023 WORKSHOPS, PT II, 2024, 14366 : 167 - 178
  • [24] ORGAN SEGMENTATION ON CT IMAGING THROUGH MACHINE LEARNING
    Park, J.
    Jin, J.
    Christie, M.
    Wilding, A.
    Villamor, S.
    Curtis, H. R.
    Beaven, A.
    Smith, T.
    Jin, D.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2023, 71 (01) : NP444 - NP444
  • [25] OrigamiNet: Weakly-Supervised, Segmentation-Free, One-Step, Full Page Text Recognition by learning to unfold
    Yousef, Mohamed
    Bishop, Tom E.
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 14698 - 14707
  • [26] Segmentation-Free OCT-Volume-Based Deep Learning Model Improves Pointwise Visual Field Sensitivity Estimation
    Chen, Zhiqi
    Shemuelian, Eitan
    Wollstein, Gadi
    Wang, Yao
    Ishikawa, Hiroshi
    Schuman, Joel S.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2023, 12 (06):
  • [27] Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data
    Liu, Yihao
    Carass, Aaron
    Zuo, Lianrui
    He, Yufan
    Han, Shuo
    Gregori, Lorenzo
    Murray, Sean
    Mishra, Rohit
    Lei, Jianqin
    Calabresi, Peter A.
    Saidha, Shiv
    Prince, Jerry L.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (12) : 3686 - 3698
  • [28] Segmentation-free Multi-font Printed Manchu Word Recognition using Deep Convolutional Features and Data Augmentation
    Zheng, Ruirui
    Li, Min
    He, Jianjun
    Bi, Jiajing
    Wu, Baochun
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [29] An Aggregation-Free Federated Learning for Tackling Data Heterogeneity
    Wang, Yuan
    Fu, Huazhu
    Kanagavelu, Renuga
    Wei, Qingsong
    Liu, Yong
    Goh, Rick Siow Mong
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 26223 - 26232
  • [30] A review on deep learning applications in highly multiplexed tissue imaging data analysis
    Zidane, Mohammed
    Makky, Ahmad
    Bruhns, Matthias
    Rochwarger, Alexander
    Babaei, Sepideh
    Claassen, Manfred
    Schuerch, Christian M.
    FRONTIERS IN BIOINFORMATICS, 2023, 3