Characterization of tumour heterogeneity through segmentation-free representation learning on multiplexed imaging data

被引:0
|
作者
Tan, Jimin [1 ,2 ,3 ,4 ,5 ]
Le, Hortense [4 ]
Deng, Jiehui [6 ]
Liu, Yingzhuo [6 ]
Hao, Yuan [7 ]
Hollenberg, Michelle [1 ,2 ]
Liu, Wenke [1 ,2 ]
Wang, Joshua M. [1 ,2 ]
Xia, Bo [5 ,8 ]
Ramaswami, Sitharam [9 ]
Mezzano, Valeria [10 ]
Loomis, Cynthia [10 ]
Murrell, Nina [4 ,7 ]
Moreira, Andre L. [4 ]
Cho, Kyunghyun [11 ,12 ,13 ]
Pass, Harvey I. [14 ]
Wong, Kwok-Kin [6 ]
Ban, Yi [6 ]
Neel, Benjamin G. [6 ]
Tsirigos, Aristotelis [3 ,4 ,7 ]
Fenyo, David [1 ,2 ]
机构
[1] NYU Grossman Sch Med, Inst Syst Genet, New York, NY 10016 USA
[2] NYU Grossman Sch Med, Dept Biochem & Mol Pharmacol, New York, NY 10016 USA
[3] NYU Grossman Sch Med, Dept Med, Div Precis Med, New York, NY 10016 USA
[4] NYU Grossman Sch Med, Dept Pathol, New York, NY 10016 USA
[5] Broad Inst MIT & Harvard, Gene Regulat Observ, Cambridge, MA 02142 USA
[6] NYU Grossman Sch Med, Laura & Isaac Perlmutter Canc Ctr, NYU Langone Hlth, New York, NY USA
[7] NYU Grossman Sch Med, Div Adv Res Technol, Appl Bioinformat Labs, NYU Langone Hlth, New York, NY 10016 USA
[8] Harvard Univ, Soc Fellows, Cambridge, MA USA
[9] NYU Langone Hlth, Genome Technol Ctr, New York, NY USA
[10] NYU Grossman Sch Med, Div Adv Res Technol, Expt Pathol Res Lab, New York, NY USA
[11] NYU, Ctr Data Sci, New York, NY USA
[12] NYU, Courant Inst Math Sci, Dept Comp Sci, New York, NY USA
[13] Genentech Inc, Prescient Design, New York, NY USA
[14] NYU Grossman Sch Med, Dept Cardiothorac Surg, New York, NY USA
基金
美国国家卫生研究院;
关键词
GENE-EXPRESSION; B-CELLS; SURVIVAL; IMMUNOTHERAPY; PEMBROLIZUMAB; IPILIMUMAB;
D O I
10.1038/s41551-025-01348-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
High-dimensional multiplexed imaging can reveal the spatial organization of tumour tissues at the molecular level. However, owing to the scale and information complexity of the imaging data, it is challenging to discover and thoroughly characterize the heterogeneity of tumour microenvironments. Here we show that self-supervised representation learning on data from imaging mass cytometry can be leveraged to distinguish morphological differences in tumour microenvironments and to precisely characterize distinct microenvironment signatures. We used self-supervised masked image modelling to train a vision transformer that directly takes high-dimensional multiplexed mass-cytometry images. In contrast with traditional spatial analyses relying on cellular segmentation, the vision transformer is segmentation-free, uses pixel-level information, and retains information on the local morphology and biomarker distribution. By applying the vision transformer to a lung-tumour dataset, we identified and validated a monocytic signature that is associated with poor prognosis.
引用
收藏
页码:405 / 419
页数:19
相关论文
共 50 条
  • [1] Hierarchical representation learning using spherical k-means for segmentation-free word spotting
    Mhiri, Mohamed
    Abuelwafa, Sherif
    Desrosiers, Christian
    Cheriet, Mohamed
    PATTERN RECOGNITION LETTERS, 2018, 101 : 52 - 59
  • [2] ImmuNet: a segmentation-free machine learning pipeline for immune landscape phenotyping in tumors by multiplex imaging
    Sultan, Shabaz
    Gorris, Mark A. J.
    Martynova, Evgenia
    van der Woude, Lieke L.
    Buytenhuijs, Franka
    van Wilpe, Sandra
    Verrijp, Kiek
    Figdor, Carl G.
    de Vries, I. Jolanda M.
    Textor, Johannes
    BIOLOGY METHODS & PROTOCOLS, 2025, 10 (01):
  • [3] Segmentation-free Heart Pathology Detection Using Deep Learning
    Bondareva, Erika
    Han, Jing
    Bradlow, William
    Mascolo, Cecilia
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 669 - 672
  • [4] Compositional Representation Learning for Brain Tumour Segmentation
    Liu, Xiao
    Kascenas, Antanas
    Watson, Hannah
    Tsaftaris, Sotirios A.
    O'Neil, Alison Q.
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER, DART 2023, 2024, 14293 : 41 - 51
  • [5] Segmentation-free analysis of multiplexed images with unbiased spatial analytics and explainable AI for predicting disease outcomes
    Pullara, Filippo
    Falkenstein, Brian
    Campbell, Bruce
    Panakkal, Samantha
    Tosun, Akif Burak
    Fine, Jeffrey
    Chennubhotla, S. Chakra
    CANCER RESEARCH, 2023, 83 (07)
  • [6] Sainsc: A Computational Tool for Segmentation-Free Analysis of In Situ Capture Data
    Mueller-Boetticher, Niklas
    Tiesmeyer, Sebastian
    Eils, Roland
    Ishaque, Naveed
    SMALL METHODS, 2024,
  • [7] Cell segmentation-free inference of cell types from in situ transcriptomics data
    Park, Jeongbin
    Choi, Wonyl
    Tiesmeyer, Sebastian
    Long, Brian
    Borm, Lars E.
    Garren, Emma
    Thuc Nghi Nguyen
    Tasic, Bosiljka
    Codeluppi, Simone
    Graf, Tobias
    Schlesner, Matthias
    Stegle, Oliver
    Eils, Roland
    Ishaque, Naveed
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [8] Brain tumour segmentation with incomplete imaging data
    Ruffle, James K.
    Mohinta, Samia
    Gray, Robert
    Hyare, Harpreet
    Nachev, Parashkev
    BRAIN COMMUNICATIONS, 2023, 5 (02)
  • [9] DEEP LEARNING FOR TUMOUR SEGMENTATION WITH MISSING DATA
    Ruffle, James
    Mohinta, Samia
    Gray, Robert
    Hyare, Harpreet
    Nachev, Parashkev
    NEURO-ONCOLOGY, 2022, 24 : 16 - 16
  • [10] Combining Deep Learning and Language Modeling for Segmentation-Free OCR From Raw Pixels
    Rawls, Stephen
    Cao, Huaigu
    Sabir, Ekraam
    Natarajan, Prem
    2017 1ST INTERNATIONAL WORKSHOP ON ARABIC SCRIPT ANALYSIS AND RECOGNITION (ASAR), 2017, : 119 - 123