Cross-validation and predictive metrics in psychological research: Do not leave out the leave-one-out

被引:0
|
作者
Iglesias, Diego [1 ]
Sorrel, Miguel A. [1 ]
Olmos, Ricardo [1 ]
机构
[1] Univ Autonoma Madrid, Fac Psychol, Dept Social Psychol & Methodol, 6 Ivan Pavlov St,Cantoblanco Campus, Madrid 28049, Spain
关键词
Prediction; Out-of-sample; Cross-validation; Generalization; REGRESSION; SHRINKAGE; COEFFICIENT;
D O I
10.3758/s13428-024-02588-w
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
There is growing interest in integrating explanatory and predictive research practices in psychological research. For this integration to be successful, the psychologist's toolkit must incorporate standard procedures that enable a direct estimation of the prediction error, such as cross-validation (CV). Despite their apparent simplicity, CV methods are intricate, and thus it is crucial to adapt them to specific contexts and predictive metrics. This study delves into the performance of different CV methods in estimating the prediction error in the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>{2}$$\end{document} and MSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{MSE}$$\end{document} metrics in regression analysis, ubiquitous in psychological research. Current approaches, which rely on the 5- or 10-fold rule of thumb or on the squared correlation between predicted and observed values, present limitations when computing the prediction error in the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>{2}$$\end{document} metric, a widely used statistic in the behavioral sciences. We propose the use of an alternative method that overcomes these limitations and enables the computation of the leave-one-out (LOO) in the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>{2}$$\end{document} metric. Through two Monte Carlo simulation studies and the application of CV to the data from the Many Labs Replication Project, we show that the LOO consistently has the best performance. The CV methods discussed in the present study have been implemented in the R package OutR2.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    Cawley, GC
    Talbot, NLC
    NEURAL NETWORKS, 2004, 17 (10) : 1467 - 1475
  • [42] Unbiased estimator for the variance of the leave-one-out cross-validation estimator for a Bayesian normal model with fixed variance
    Sivula, Tuomas
    Magnusson, Mans
    Vehtari, Aki
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (16) : 5877 - 5899
  • [43] Cross-validation of best linear unbiased predictions of breeding values using an efficient leave-one-out strategy
    Cheng, Jian
    Dekkers, Jack C. M.
    Fernando, Rohan L.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2021, 138 (05) : 519 - 527
  • [44] Bringing 2D Eclipse Mapping out of the Shadows with Leave-one-out Cross Validation
    Challener, Ryan C.
    Welbanks, Luis
    McGill, Peter
    ASTRONOMICAL JOURNAL, 2023, 166 (06):
  • [45] Bayesian Leave-One-Out Cross Validation Approximations for Gaussian Latent Variable Models
    Vehtari, Aki
    Mononen, Tommi
    Tolvanen, Ville
    Sivula, Tuomas
    Winther, Ole
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [46] Approximate Leave-One-Out Cross Validation for Regression With l1 Regularizers
    Auddy, Arnab
    Zou, Haolin
    Rad, Kamiar Rahnama
    Maleki, Arian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (11) : 8040 - 8071
  • [47] Approximate Leave-one-out Cross Validation for Regression with l1 Regularizers
    Auddy, Arnab
    Zou, Haolin
    Rad, Kamiar Rahnama
    Maleki, Arian
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [48] Leave-one-out support vector machines
    Weston, J
    IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, 1999, : 727 - 731
  • [49] Estimating MLP generalisation ability without a test set using fast, approximate leave-one-out cross-validation
    Andrew J. Myles
    Alan F. Murray
    A. Robin Wallace
    John Barnard
    Gordon Smith
    Neural Computing & Applications, 1997, 5 : 134 - 151
  • [50] Efficient leave-one-out cross-validation for Bayesian non-factorized normal and Student-t models
    Paul-Christian Bürkner
    Jonah Gabry
    Aki Vehtari
    Computational Statistics, 2021, 36 : 1243 - 1261