Cross-validation and predictive metrics in psychological research: Do not leave out the leave-one-out

被引:0
|
作者
Iglesias, Diego [1 ]
Sorrel, Miguel A. [1 ]
Olmos, Ricardo [1 ]
机构
[1] Univ Autonoma Madrid, Fac Psychol, Dept Social Psychol & Methodol, 6 Ivan Pavlov St,Cantoblanco Campus, Madrid 28049, Spain
关键词
Prediction; Out-of-sample; Cross-validation; Generalization; REGRESSION; SHRINKAGE; COEFFICIENT;
D O I
10.3758/s13428-024-02588-w
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
There is growing interest in integrating explanatory and predictive research practices in psychological research. For this integration to be successful, the psychologist's toolkit must incorporate standard procedures that enable a direct estimation of the prediction error, such as cross-validation (CV). Despite their apparent simplicity, CV methods are intricate, and thus it is crucial to adapt them to specific contexts and predictive metrics. This study delves into the performance of different CV methods in estimating the prediction error in the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>{2}$$\end{document} and MSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{MSE}$$\end{document} metrics in regression analysis, ubiquitous in psychological research. Current approaches, which rely on the 5- or 10-fold rule of thumb or on the squared correlation between predicted and observed values, present limitations when computing the prediction error in the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>{2}$$\end{document} metric, a widely used statistic in the behavioral sciences. We propose the use of an alternative method that overcomes these limitations and enables the computation of the leave-one-out (LOO) in the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>{2}$$\end{document} metric. Through two Monte Carlo simulation studies and the application of CV to the data from the Many Labs Replication Project, we show that the LOO consistently has the best performance. The CV methods discussed in the present study have been implemented in the R package OutR2.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Erratum to: Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
    Aki Vehtari
    Andrew Gelman
    Jonah Gabry
    Statistics and Computing, 2017, 27 : 1433 - 1433
  • [32] Optimizing Sparse Kernel Ridge Regression Hyperparameters Based on Leave-One-Out Cross-Validation
    Karasuyama, Masayuki
    Nakano, Ryohei
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 3463 - 3468
  • [33] Efficient approximate k-fold and leave-one-out cross-validation for ridge regression
    Meijer, Rosa J.
    Goeman, Jelle J.
    BIOMETRICAL JOURNAL, 2013, 55 (02) : 141 - 155
  • [34] The leave-one-out kernel
    Tsuda, K
    Kawanabe, M
    ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 727 - 732
  • [35] Leave-one-out Unfairness
    Black, Emily
    Fredrikson, Matt
    PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, 2021, : 285 - 295
  • [36] Dichotomous logistic regression with leave-one-out validation
    Teh, Sin Yin
    Othman, Abdul Rahman
    Khoo, Michael Boon Chong
    World Academy of Science, Engineering and Technology, 2010, 62 : 1001 - 1010
  • [37] Online modeling of kernel extreme learning machine based on fast leave-one-out cross-validation
    Zhang, Y.-T. (zyt01@mails.tsinghua.edu.cn), 1600, Shanghai Jiaotong University (48):
  • [38] Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs
    Cawley, Gavin C.
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1661 - 1668
  • [39] A leave-one-out cross validation bound for kernel methods with applications in learning
    Zhang, T
    COMPUTATIONAL LEARNING THEORY, PROCEEDINGS, 2001, 2111 : 427 - 443
  • [40] Leave-one-out manifold regularization
    Yuan, Jin
    Liu, Xuemei
    Liu, Cheng-Liang
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (05) : 5317 - 5324