Cross-validation and predictive metrics in psychological research: Do not leave out the leave-one-out

被引:0
|
作者
Iglesias, Diego [1 ]
Sorrel, Miguel A. [1 ]
Olmos, Ricardo [1 ]
机构
[1] Univ Autonoma Madrid, Fac Psychol, Dept Social Psychol & Methodol, 6 Ivan Pavlov St,Cantoblanco Campus, Madrid 28049, Spain
关键词
Prediction; Out-of-sample; Cross-validation; Generalization; REGRESSION; SHRINKAGE; COEFFICIENT;
D O I
10.3758/s13428-024-02588-w
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
There is growing interest in integrating explanatory and predictive research practices in psychological research. For this integration to be successful, the psychologist's toolkit must incorporate standard procedures that enable a direct estimation of the prediction error, such as cross-validation (CV). Despite their apparent simplicity, CV methods are intricate, and thus it is crucial to adapt them to specific contexts and predictive metrics. This study delves into the performance of different CV methods in estimating the prediction error in the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>{2}$$\end{document} and MSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{MSE}$$\end{document} metrics in regression analysis, ubiquitous in psychological research. Current approaches, which rely on the 5- or 10-fold rule of thumb or on the squared correlation between predicted and observed values, present limitations when computing the prediction error in the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>{2}$$\end{document} metric, a widely used statistic in the behavioral sciences. We propose the use of an alternative method that overcomes these limitations and enables the computation of the leave-one-out (LOO) in the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>{2}$$\end{document} metric. Through two Monte Carlo simulation studies and the application of CV to the data from the Many Labs Replication Project, we show that the LOO consistently has the best performance. The CV methods discussed in the present study have been implemented in the R package OutR2.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Ensemble Kalman Filter Regularization Using Leave-One-Out Data Cross-Validation
    Rayo, Lautaro
    Hoteit, Ibrahim
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1247 - 1250
  • [22] Design of Incremental Echo State Network Using Leave-One-Out Cross-Validation
    Yang, Cuili
    Zhu, Xinxin
    Ahmad, Zohaib
    Wang, Lei
    Qiao, Junfei
    IEEE ACCESS, 2018, 6 : 74874 - 74884
  • [23] Algorithmic stability and sanity-check bounds for leave-one-out cross-validation
    Kearns, M
    Ron, D
    NEURAL COMPUTATION, 1999, 11 (06) : 1427 - 1453
  • [24] A leave-one-out cross-validation SAS macro for the identification of markers associated with survival
    Rushing, Christel
    Bulusu, Anuradha
    Hurwitz, Herbert I.
    Nixon, Andrew B.
    Pang, Herbert
    COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 57 : 123 - 129
  • [25] Enhanced Kriging leave-one-out cross-validation in improving model estimation and optimization
    Pang, Yong
    Wang, Yitang
    Lai, Xiaonan
    Zhang, Shuai
    Liang, Pengwei
    Song, Xueguan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 414
  • [26] Robust Leave-One-Out Cross-Validation for High-Dimensional Bayesian Models
    Silva, Luca Alessandro
    Zanella, Giacomo
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (547) : 2369 - 2381
  • [27] Spatial leave-one-out cross-validation for variable selection in the presence of spatial autocorrelation
    Le Rest, Kevin
    Pinaud, David
    Monestiez, Pascal
    Chadoeuf, Joel
    Bretagnolle, Vincent
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2014, 23 (07): : 811 - 820
  • [28] EBM PEARL: LEAVE-ONE-OUT (LOO) CROSS VALIDATION
    Hupert, Jordan
    JOURNAL OF PEDIATRICS, 2020, 220 : 264 - 264
  • [29] A scalable estimate of the out-of-sample prediction error via approximate leave-one-out cross-validation
    Rad, Kamiar Rahnama
    Maleki, Arian
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2020, 82 (04) : 965 - 996
  • [30] Honest leave-one-out cross-validation for estimating post-tuning generalization error
    Wang, Boxiang
    Zou, Hui
    STAT, 2021, 10 (01):