Cross-validation and predictive metrics in psychological research: Do not leave out the leave-one-out

被引:0
|
作者
Iglesias, Diego [1 ]
Sorrel, Miguel A. [1 ]
Olmos, Ricardo [1 ]
机构
[1] Univ Autonoma Madrid, Fac Psychol, Dept Social Psychol & Methodol, 6 Ivan Pavlov St,Cantoblanco Campus, Madrid 28049, Spain
关键词
Prediction; Out-of-sample; Cross-validation; Generalization; REGRESSION; SHRINKAGE; COEFFICIENT;
D O I
10.3758/s13428-024-02588-w
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
There is growing interest in integrating explanatory and predictive research practices in psychological research. For this integration to be successful, the psychologist's toolkit must incorporate standard procedures that enable a direct estimation of the prediction error, such as cross-validation (CV). Despite their apparent simplicity, CV methods are intricate, and thus it is crucial to adapt them to specific contexts and predictive metrics. This study delves into the performance of different CV methods in estimating the prediction error in the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>{2}$$\end{document} and MSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{MSE}$$\end{document} metrics in regression analysis, ubiquitous in psychological research. Current approaches, which rely on the 5- or 10-fold rule of thumb or on the squared correlation between predicted and observed values, present limitations when computing the prediction error in the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>{2}$$\end{document} metric, a widely used statistic in the behavioral sciences. We propose the use of an alternative method that overcomes these limitations and enables the computation of the leave-one-out (LOO) in the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}<^>{2}$$\end{document} metric. Through two Monte Carlo simulation studies and the application of CV to the data from the Many Labs Replication Project, we show that the LOO consistently has the best performance. The CV methods discussed in the present study have been implemented in the R package OutR2.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Automatic cross-validation in structured models: Is it time to leave out leave-one-out?
    Adin, Aritz
    Krainski, Elias Teixeira
    Lenzi, Amanda
    Liu, Zhedong
    Martinez-Minaya, Joaquin
    Rue, Havard
    SPATIAL STATISTICS, 2024, 62
  • [2] Leave-one-out cross-validation is risk consistent for lasso
    Darren Homrighausen
    Daniel J. McDonald
    Machine Learning, 2014, 97 : 65 - 78
  • [3] Bayesian Leave-One-Out Cross-Validation for Large Data
    Magnusson, Mans
    Andersen, Michael Riis
    Jonasson, Johan
    Vehtari, Aki
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [4] Leave-one-out cross-validation is risk consistent for lasso
    Homrighausen, Darren
    McDonald, Daniel J.
    MACHINE LEARNING, 2014, 97 (1-2) : 65 - 78
  • [5] Weighted Leave-One-Out Cross Validation
    Pronzato, Luc
    Rendas, Maria-Joao
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2024, 12 (04): : 1213 - 1239
  • [6] Rejoinder: More Limitations of Bayesian Leave-One-Out Cross-Validation
    Gronau Q.F.
    Wagenmakers E.-J.
    Computational Brain & Behavior, 2019, 2 (1) : 35 - 47
  • [7] Limitations of Bayesian Leave-One-Out Cross-Validation for Model Selection
    Gronau Q.F.
    Wagenmakers E.-J.
    Computational Brain & Behavior, 2019, 2 (1) : 1 - 11
  • [8] Efficient approximate leave-one-out cross-validation for kernel logistic regression
    Cawley, Gavin C.
    Talbot, Nicola L. C.
    MACHINE LEARNING, 2008, 71 (2-3) : 243 - 264
  • [9] Leave-One-Out Cross-Validation for Bayesian Model Comparison in Large Data
    Magnusson, Mans
    Andersen, Michael Riis
    Jonasson, Johan
    Vehtari, Aki
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 341 - 350
  • [10] Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers
    Cawley, GC
    Talbot, NLC
    PATTERN RECOGNITION, 2003, 36 (11) : 2585 - 2592