Learning to reconstruct accelerated MRI through K-space cold diffusion without noise

被引:0
|
作者
Shen, Guoyao [1 ,2 ]
Li, Mengyu [1 ,2 ]
Farris, Chad W. [3 ]
Anderson, Stephan [2 ,3 ]
Zhang, Xin [1 ,2 ]
机构
[1] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[3] Boston Univ, Chobanian & Avedisian Sch Med, Boston Med Ctr, Dept Radiol, Boston, MA 02118 USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
NETWORK;
D O I
10.1038/s41598-024-72820-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep learning-based MRI reconstruction models have achieved superior performance these days. Most recently, diffusion models have shown remarkable performance in image generation, in-painting, super-resolution, image editing and more. As a generalized diffusion model, cold diffusion further broadens the scope and considers models built around arbitrary image transformations such as blurring, down-sampling, etc. In this paper, we propose a k-space cold diffusion model that performs image degradation and restoration in k-space without the need for Gaussian noise. We provide comparisons with multiple deep learning-based MRI reconstruction models and perform tests on a well-known large open-source MRI dataset. Our results show that this novel way of performing degradation can generate high-quality reconstruction images for accelerated MRI.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] k-Space Deep Learning for Accelerated MRI
    Han, Yoseob
    Sunwoo, Leonard
    Ye, Jong Chul
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (02) : 377 - 386
  • [2] A review on deep learning MRI reconstruction without fully sampled k-space
    Zeng, Gushan
    Guo, Yi
    Zhan, Jiaying
    Wang, Zi
    Lai, Zongying
    Du, Xiaofeng
    Qu, Xiaobo
    Guo, Di
    BMC MEDICAL IMAGING, 2021, 21 (01)
  • [3] A review on deep learning MRI reconstruction without fully sampled k-space
    Gushan Zeng
    Yi Guo
    Jiaying Zhan
    Zi Wang
    Zongying Lai
    Xiaofeng Du
    Xiaobo Qu
    Di Guo
    BMC Medical Imaging, 21
  • [4] Enhancing the performance of accelerated MRI through preservation of acquisition SNR: An "aliased" k-space approach
    Arunachalam, Arjun
    MAGNETIC RESONANCE IN MEDICINE, 2015, 74 (01) : 150 - 161
  • [5] Three-dimensional Yarnball k-space acquisition for accelerated MRI
    Stobbe, Robert W.
    Beaulieu, Christian
    MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (04) : 1840 - 1854
  • [6] Learning ADC maps from accelerated radial k-space diffusion-weighted MRI in mice using a deep CNN-transformer model
    Li, Yuemeng
    Joaquim, Miguel Romanello
    Pickup, Stephen
    Song, Hee Kwon
    Zhou, Rong
    Fan, Yong
    MAGNETIC RESONANCE IN MEDICINE, 2024, 91 (01) : 105 - 117
  • [7] k-space interpretation of the Rose Model:: Noise limitation on the detectable resolution in MRI
    Watts, R
    Wang, Y
    MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (03) : 550 - 554
  • [8] Accelerated MRI Thermometry by Direct Estimation of Temperature from Undersampled k-Space Data
    Gaur, Pooja
    Grissom, William A.
    MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (05) : 1914 - 1925
  • [9] Accelerated reconstruct MRI T2 map from sub-sampled K-space Data using compressed sensing at 7.0 Tesla
    Zhang, G.
    Xiao, G.
    Dai, Z.
    Shen, Z.
    Li, S.
    Wu, R.
    JOURNAL OF NEUROLOGY, 2014, 261 : S398 - S399
  • [10] Accelerated reconstruct MRI T2 map from sub-sampled K-space data using compressed sensing at 7.0 Tesla
    Zhang, G.
    Xiao, G.
    Dai, Z.
    Shen, Z.
    Li, S.
    Wu, R.
    EUROPEAN JOURNAL OF NEUROLOGY, 2014, 21 : 611 - 611