Non-resonant background removal in broadband CARS microscopy using deep-learning algorithms

被引:0
|
作者
Vernuccio, Federico [1 ,2 ]
Broggio, Elia [3 ]
Sorrentino, Salvatore [1 ]
Bresci, Arianna [1 ]
Junjuri, Rajendhar [4 ,5 ,6 ,7 ,8 ,9 ]
Ventura, Marco [1 ,10 ]
Vanna, Renzo [10 ]
Bocklitz, Thomas [4 ,5 ,6 ,7 ,8 ,9 ]
Bregonzio, Matteo [3 ]
Cerullo, Giulio [1 ,10 ]
Rigneault, Herve [2 ]
Polli, Dario [1 ,10 ]
机构
[1] Politecn Milan, Dept Phys, Pzza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Aix Marseille Univ, Inst Fresnel, CNRS, Cent Med, Marseille, France
[3] Datrix SpA, Foro Buonaparte 71, I-20121 Milan, Italy
[4] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[5] Leibniz Hlth Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[6] Leibniz Ctr Photon Infect Res LPI, Albert Einstein Str 9, D-07745 Jena, Germany
[7] Friedrich Schiller Univ Jena, Inst Phys Chem IPC, Helmholtzweg 4, D-07743 Jena, Germany
[8] Friedrich Schiller Univ Jena, Abbe Ctr Photon ACP, Helmholtzweg 4, D-07743 Jena, Germany
[9] Leibniz Ctr Photon Infect Res LPI, Helmholtzweg 4, D-07743 Jena, Germany
[10] CNR Inst Photon & Nanotechnol CNR IFN, Pzza Leonardo Da Vinci 32, I-20133 Milan, Italy
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
RAMAN-SCATTERING MICROSCOPY; PHASE RETRIEVAL; SPECTROSCOPY; ENTROPY; SPECTRA; SIGNALS; IMAGES;
D O I
10.1038/s41598-024-74912-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Broadband Coherent anti-Stokes Raman (BCARS) microscopy is an imaging technique that can acquire full Raman spectra (400-3200 cm-1) of biological samples within a few milliseconds. However, the CARS signal suffers from an undesired non-resonant background (NRB), deriving from four-wave-mixing processes, which distorts the peak line shapes and reduces the chemical contrast. Traditionally, the NRB is removed using numerical algorithms that require expert users and knowledge of the NRB spectral profile. Recently, deep-learning models proved to be powerful tools for unsupervised automation and acceleration of NRB removal. Here, we thoroughly review the existing NRB removal deep-learning models (SpecNet, VECTOR, LSTM, Bi-LSTM) and present two novel architectures. The first one combines convolutional layers with Gated Recurrent Units (CNN + GRU); the second one is a Generative Adversarial Network (GAN) that trains an encoder-decoder network and an adversarial convolutional neural network. We also introduce an improved training dataset, generalized on different BCARS experimental configurations. We compare the performances of all these networks on test and experimental data, using them in the pipeline for spectral unmixing of BCARS images. Our analyses show that CNN + GRU and VECTOR are the networks giving the highest accuracy, GAN is the one that predicts the highest number of true positive peaks in experimental data, whereas GAN and VECTOR are the most suitable ones for real-time processing of BCARS images.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] AgroCounters-A repository for counting objects in images in the agricultural domain by using deep-learning algorithms: Framework and evaluation
    Farjon, Guy
    Edan, Yael
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 222
  • [32] Estimating Retinal Sensitivity Using Optical Coherence Tomography With Deep-Learning Algorithms in Macular Telangiectasia Type 2
    Kihara, Yuka
    Heeren, Tjebo F. C.
    Lee, Cecilia S.
    Wu, Yue
    Xiao, Sa
    Tzaridis, Simone
    Holz, Frank G.
    Issa, Peter Charbel
    Egan, Catherine A.
    Lee, Aaron Y.
    JAMA NETWORK OPEN, 2019, 2 (02)
  • [33] Training Ultrasound Image Classification Deep-Learning Algorithms for Pneumothorax Detection Using a Synthetic Tissue Phantom Apparatus
    Boice, Emily N.
    Torres, Sofia I. Hernandez
    Knowlton, Zechariah J.
    Berard, David
    Gonzalez, Jose M.
    Avital, Guy
    Snider, Eric J.
    JOURNAL OF IMAGING, 2022, 8 (09)
  • [34] Automated pneumothorax triaging in chest X-rays in the New Zealand population using deep-learning algorithms
    Feng, Sijing
    Liu, Qixiu
    Patel, Aakash
    Bazai, Sibghat Ullah
    Jin, Cheng-Kai
    Kim, Ji Soo
    Sarrafzadeh, Mikal
    Azzollini, Damian
    Yeoh, Jason
    Kim, Eve
    Gordon, Simon
    Jang-Jaccard, Julian
    Urschler, Martin
    Barnard, Stuart
    Fong, Amy
    Simmers, Cameron
    Tarr, Gregory P.
    Wilson, Ben
    JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2022, 66 (08) : 1035 - 1043
  • [35] Broadband ultrathin circular polarizer at visible and near-infrared wavelengths using a non-resonant characteristic in helically stacked nano-gratings
    Yun, Jeong-Geun
    Kim, Sun-Je
    Yun, Hansik
    Lee, Kyookeun
    Sung, Jangwoon
    Kim, Joonsoo
    Lee, Yohan
    Lee, Byoungho
    OPTICS EXPRESS, 2017, 25 (13): : 14260 - 14269
  • [36] A Deep-Learning Model for Predicting the Efficacy of Non-vascularized Fibular Grafting Using Digital Radiography
    Chen, Hao
    Xue, Peng
    Xi, Hongzhong
    Gu, Changyuan
    He, Shuai
    Sun, Guangquan
    Pan, Ke
    Du, Bin
    Liu, Xin
    ACADEMIC RADIOLOGY, 2024, 31 (04) : 1501 - 1507
  • [37] Deep-Learning Algorithmic-Based Improved Maximum Power Point-Tracking Algorithms Using Irradiance Forecast
    Roh, Chan
    PROCESSES, 2022, 10 (11)
  • [38] Fast Background Removal in 3D Fluorescence Microscopy Images Using One-Class Learning
    Yang, Lin
    Zhang, Yizhe
    Guldner, Ian H.
    Zhang, Siyuan
    Chen, Danny Z.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 292 - 299
  • [39] Ultra-broadband natural frequency using automatic resonance tuning of energy harvester and deep learning algorithms
    Kouritem, Sallam A.
    Altabey, Wael A.
    ENERGY CONVERSION AND MANAGEMENT, 2022, 272
  • [40] Automated Defect Detection in Non-planar Objects Using Deep Learning Algorithms
    Yuntao Tao
    Caiqi Hu
    Hai Zhang
    Ahmad Osman
    Clemente Ibarra-Castanedo
    Qiang Fang
    Stefano Sfarra
    Xiaobiao Dai
    Xavier Maldague
    Yuxia Duan
    Journal of Nondestructive Evaluation, 2022, 41