Non-resonant background removal in broadband CARS microscopy using deep-learning algorithms

被引:0
|
作者
Vernuccio, Federico [1 ,2 ]
Broggio, Elia [3 ]
Sorrentino, Salvatore [1 ]
Bresci, Arianna [1 ]
Junjuri, Rajendhar [4 ,5 ,6 ,7 ,8 ,9 ]
Ventura, Marco [1 ,10 ]
Vanna, Renzo [10 ]
Bocklitz, Thomas [4 ,5 ,6 ,7 ,8 ,9 ]
Bregonzio, Matteo [3 ]
Cerullo, Giulio [1 ,10 ]
Rigneault, Herve [2 ]
Polli, Dario [1 ,10 ]
机构
[1] Politecn Milan, Dept Phys, Pzza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Aix Marseille Univ, Inst Fresnel, CNRS, Cent Med, Marseille, France
[3] Datrix SpA, Foro Buonaparte 71, I-20121 Milan, Italy
[4] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[5] Leibniz Hlth Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[6] Leibniz Ctr Photon Infect Res LPI, Albert Einstein Str 9, D-07745 Jena, Germany
[7] Friedrich Schiller Univ Jena, Inst Phys Chem IPC, Helmholtzweg 4, D-07743 Jena, Germany
[8] Friedrich Schiller Univ Jena, Abbe Ctr Photon ACP, Helmholtzweg 4, D-07743 Jena, Germany
[9] Leibniz Ctr Photon Infect Res LPI, Helmholtzweg 4, D-07743 Jena, Germany
[10] CNR Inst Photon & Nanotechnol CNR IFN, Pzza Leonardo Da Vinci 32, I-20133 Milan, Italy
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
RAMAN-SCATTERING MICROSCOPY; PHASE RETRIEVAL; SPECTROSCOPY; ENTROPY; SPECTRA; SIGNALS; IMAGES;
D O I
10.1038/s41598-024-74912-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Broadband Coherent anti-Stokes Raman (BCARS) microscopy is an imaging technique that can acquire full Raman spectra (400-3200 cm-1) of biological samples within a few milliseconds. However, the CARS signal suffers from an undesired non-resonant background (NRB), deriving from four-wave-mixing processes, which distorts the peak line shapes and reduces the chemical contrast. Traditionally, the NRB is removed using numerical algorithms that require expert users and knowledge of the NRB spectral profile. Recently, deep-learning models proved to be powerful tools for unsupervised automation and acceleration of NRB removal. Here, we thoroughly review the existing NRB removal deep-learning models (SpecNet, VECTOR, LSTM, Bi-LSTM) and present two novel architectures. The first one combines convolutional layers with Gated Recurrent Units (CNN + GRU); the second one is a Generative Adversarial Network (GAN) that trains an encoder-decoder network and an adversarial convolutional neural network. We also introduce an improved training dataset, generalized on different BCARS experimental configurations. We compare the performances of all these networks on test and experimental data, using them in the pipeline for spectral unmixing of BCARS images. Our analyses show that CNN + GRU and VECTOR are the networks giving the highest accuracy, GAN is the one that predicts the highest number of true positive peaks in experimental data, whereas GAN and VECTOR are the most suitable ones for real-time processing of BCARS images.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Using Deep-Learning Algorithms to Simultaneously Identify Right and Left Ventricular Dysfunction From the Electrocardiogram
    Vaid, Akhil
    Johnson, Kipp W.
    Badgeley, Marcus A.
    Somani, Sulaiman S.
    Bicak, Mesude
    Landi, Isotta
    Russak, Adam
    Zhao, Shan
    Levin, Matthew A.
    Freeman, Robert S.
    Charney, Alexander W.
    Kukar, Atul
    Kim, Bette
    Danilov, Tatyana
    Lerakis, Stamatios
    Argulian, Edgar
    Narula, Jagat
    Nadkarni, Girish N.
    Glicksberg, Benjamin S.
    JACC-CARDIOVASCULAR IMAGING, 2022, 15 (03) : 395 - 410
  • [22] Super-resolution reconstruction of structured illumination microscopy using deep-learning and sparse deconvolution
    Song, Liangfeng
    Liu, Xin
    Xiong, Zihan
    Ahamed, Mostak
    An, Sha
    Zheng, Juanjuan
    Ma, Ying
    Gao, Peng
    OPTICS AND LASERS IN ENGINEERING, 2024, 174
  • [23] COVID-19 Detection Systems Using Deep-Learning Algorithms Based on Speech and Image Data
    Nassif, Ali Bou
    Shahin, Ismail
    Bader, Mohamed
    Hassan, Abdelfatah
    Werghi, Naoufel
    MATHEMATICS, 2022, 10 (04)
  • [24] Debris flows modeling using geo-environmental factors: developing hybridized deep-learning algorithms
    Li, Yang
    Chen, Wei
    Rezaie, Fatemeh
    Rahmati, Omid
    Davoudi Moghaddam, Davoud
    Tiefenbacher, John
    Panahi, Mahdi
    Lee, Moung-Jin
    Kulakowski, Dominik
    Tien Bui, Dieu
    Lee, Saro
    GEOCARTO INTERNATIONAL, 2022, 37 (17) : 5150 - 5173
  • [25] Widefield light sheet microscopy using an Airy beam combined with deep-learning super-resolution
    Corsetti, Stella
    Wijesinghe, Philip
    Poulton, Persephone B.
    Sakata, Shuzo
    Vyas, Khushi
    Herrington, C. Simon
    Nylk, Jonathan
    Gasparoli, Federico
    Dholakia, Kishan
    OSA CONTINUUM, 2020, 3 (04): : 1068 - 1083
  • [26] Ring Artifacts Removal & Noise Reduction in X-Ray Computed Tomography Using Deep-Learning
    Nguyen, Duy
    Terzi, Sofiane
    Bravais, Guillaume
    Autret, Awen
    Fayard, Barbara
    e-Journal of Nondestructive Testing, 2023, 28 (03):
  • [27] Deep learning-based stability of quasi-integrable and non-resonant Hamiltonian systems driven by fractional Gaussian noise
    Lue, Qiangfeng
    Zhu, Weiqiu
    Deng, Maolin
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024,
  • [28] A review for cell and particle tracking on microscopy images using algorithms and deep learning technologies
    Cheng, Hui -Jun
    Hsu, Ching-Hsien
    Hung, Che-Lun
    Lin, Chun -Yuan
    BIOMEDICAL JOURNAL, 2022, 45 (03) : 465 - 471
  • [29] Enabling Safe Co-Existence of Connected/Autonomous Cars and Road Users Using Machine Learning and Deep Learning Algorithms
    Contreras-Castillo, Juan
    Zeadally, Sherali
    Guerrero-Ibanez, Juan
    Santana-Mancilla, P. C.
    Katib, I.
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2025, 36 (03):
  • [30] Using deep-learning algorithms to derive basic characteristics of social media users: The Brexit campaign as a case study
    Mancosu, Moreno
    Bobba, Giuliano
    PLOS ONE, 2019, 14 (01):