Non-resonant background removal in broadband CARS microscopy using deep-learning algorithms

被引:0
|
作者
Vernuccio, Federico [1 ,2 ]
Broggio, Elia [3 ]
Sorrentino, Salvatore [1 ]
Bresci, Arianna [1 ]
Junjuri, Rajendhar [4 ,5 ,6 ,7 ,8 ,9 ]
Ventura, Marco [1 ,10 ]
Vanna, Renzo [10 ]
Bocklitz, Thomas [4 ,5 ,6 ,7 ,8 ,9 ]
Bregonzio, Matteo [3 ]
Cerullo, Giulio [1 ,10 ]
Rigneault, Herve [2 ]
Polli, Dario [1 ,10 ]
机构
[1] Politecn Milan, Dept Phys, Pzza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Aix Marseille Univ, Inst Fresnel, CNRS, Cent Med, Marseille, France
[3] Datrix SpA, Foro Buonaparte 71, I-20121 Milan, Italy
[4] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[5] Leibniz Hlth Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[6] Leibniz Ctr Photon Infect Res LPI, Albert Einstein Str 9, D-07745 Jena, Germany
[7] Friedrich Schiller Univ Jena, Inst Phys Chem IPC, Helmholtzweg 4, D-07743 Jena, Germany
[8] Friedrich Schiller Univ Jena, Abbe Ctr Photon ACP, Helmholtzweg 4, D-07743 Jena, Germany
[9] Leibniz Ctr Photon Infect Res LPI, Helmholtzweg 4, D-07743 Jena, Germany
[10] CNR Inst Photon & Nanotechnol CNR IFN, Pzza Leonardo Da Vinci 32, I-20133 Milan, Italy
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
RAMAN-SCATTERING MICROSCOPY; PHASE RETRIEVAL; SPECTROSCOPY; ENTROPY; SPECTRA; SIGNALS; IMAGES;
D O I
10.1038/s41598-024-74912-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Broadband Coherent anti-Stokes Raman (BCARS) microscopy is an imaging technique that can acquire full Raman spectra (400-3200 cm-1) of biological samples within a few milliseconds. However, the CARS signal suffers from an undesired non-resonant background (NRB), deriving from four-wave-mixing processes, which distorts the peak line shapes and reduces the chemical contrast. Traditionally, the NRB is removed using numerical algorithms that require expert users and knowledge of the NRB spectral profile. Recently, deep-learning models proved to be powerful tools for unsupervised automation and acceleration of NRB removal. Here, we thoroughly review the existing NRB removal deep-learning models (SpecNet, VECTOR, LSTM, Bi-LSTM) and present two novel architectures. The first one combines convolutional layers with Gated Recurrent Units (CNN + GRU); the second one is a Generative Adversarial Network (GAN) that trains an encoder-decoder network and an adversarial convolutional neural network. We also introduce an improved training dataset, generalized on different BCARS experimental configurations. We compare the performances of all these networks on test and experimental data, using them in the pipeline for spectral unmixing of BCARS images. Our analyses show that CNN + GRU and VECTOR are the networks giving the highest accuracy, GAN is the one that predicts the highest number of true positive peaks in experimental data, whereas GAN and VECTOR are the most suitable ones for real-time processing of BCARS images.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] NON-RESONANT BACKGROUND SUPPRESSION IN PRERESONANCE CARS SPECTRA OF FLAVIN ADENINE-DINUCLEOTIDE - DEMONSTRATION OF A BACKGROUND SUPPRESSION TECHNIQUE USING PHASE MISMATCHING AND COMPARISON WITH THE POLARIZATION-SENSITIVE CARS TECHNIQUE
    SCHOLTEN, TAHM
    LUCASSEN, GW
    KOELEWIJN, E
    DEMUL, FFM
    GREVE, J
    JOURNAL OF RAMAN SPECTROSCOPY, 1989, 20 (08) : 503 - 516
  • [12] The instability prediction of non-resonant energetic particle modes based on machine learning algorithms
    Liu, Sheng
    Ren, Zhenzhen
    Wang, Weihua
    Yang, Jinhong
    Ning, Hongwei
    Zhong, Kai
    PHYSICA SCRIPTA, 2025, 100 (03)
  • [13] Cytopathological image analysis using deep-learning networks in microfluidic microscopy
    Gopakumar, G.
    Babu, K. Hari
    Mishra, Deepak
    Gorthi, Sai Siva
    Subrahmanyam, Gorthi. R. K. Sai
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (01) : 111 - 121
  • [14] Improving the time resolution of the MRPC detector using deep-learning algorithms
    Wang, F.
    Han, D.
    Wang, Y.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (09):
  • [15] Automated urinary sediment detection for Fabry disease using deep-learning algorithms
    Uryu, Hidetaka
    Migita, Ohsuke
    Ozawa, Minami
    Kamijo, Chikako
    Aoto, Saki
    Okamura, Kohji
    Hasegawa, Fuyuki
    Okuyama, Torayuki
    Kosuga, Motomichi
    Hata, Kenichiro
    MOLECULAR GENETICS AND METABOLISM REPORTS, 2022, 33
  • [17] Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal
    Xie, H. N.
    Wang, N.
    He, M.
    Zhang, L. H.
    Cai, H. M.
    Xian, J. B.
    Lin, M. F.
    Zheng, J.
    Yang, Y. Z.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2020, 56 (04) : 579 - 587
  • [18] Dynamic detection of graft fibrosis after liver transplantation using deep-learning algorithms
    Azhie, A.
    Sharma, D.
    Sheth, P.
    Xu, W.
    Bhat, M.
    TRANSPLANTATION, 2022, 106 (8S) : 100 - 101
  • [19] Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics
    Sarvazyan, A.
    Fillinger, L.
    ULTRASONICS, 2009, 49 (03) : 301 - 305
  • [20] Real-time biodiversity analysis using deep-learning algorithms on mobile robotic platforms
    Panigrahi, Siddhant
    Maski, Prajwal
    Thondiyath, Asokan
    PEERJ COMPUTER SCIENCE, 2023, 9