Non-resonant background removal in broadband CARS microscopy using deep-learning algorithms

被引:0
|
作者
Vernuccio, Federico [1 ,2 ]
Broggio, Elia [3 ]
Sorrentino, Salvatore [1 ]
Bresci, Arianna [1 ]
Junjuri, Rajendhar [4 ,5 ,6 ,7 ,8 ,9 ]
Ventura, Marco [1 ,10 ]
Vanna, Renzo [10 ]
Bocklitz, Thomas [4 ,5 ,6 ,7 ,8 ,9 ]
Bregonzio, Matteo [3 ]
Cerullo, Giulio [1 ,10 ]
Rigneault, Herve [2 ]
Polli, Dario [1 ,10 ]
机构
[1] Politecn Milan, Dept Phys, Pzza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Aix Marseille Univ, Inst Fresnel, CNRS, Cent Med, Marseille, France
[3] Datrix SpA, Foro Buonaparte 71, I-20121 Milan, Italy
[4] Leibniz Inst Photon Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[5] Leibniz Hlth Technol, Albert Einstein Str 9, D-07745 Jena, Germany
[6] Leibniz Ctr Photon Infect Res LPI, Albert Einstein Str 9, D-07745 Jena, Germany
[7] Friedrich Schiller Univ Jena, Inst Phys Chem IPC, Helmholtzweg 4, D-07743 Jena, Germany
[8] Friedrich Schiller Univ Jena, Abbe Ctr Photon ACP, Helmholtzweg 4, D-07743 Jena, Germany
[9] Leibniz Ctr Photon Infect Res LPI, Helmholtzweg 4, D-07743 Jena, Germany
[10] CNR Inst Photon & Nanotechnol CNR IFN, Pzza Leonardo Da Vinci 32, I-20133 Milan, Italy
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
RAMAN-SCATTERING MICROSCOPY; PHASE RETRIEVAL; SPECTROSCOPY; ENTROPY; SPECTRA; SIGNALS; IMAGES;
D O I
10.1038/s41598-024-74912-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Broadband Coherent anti-Stokes Raman (BCARS) microscopy is an imaging technique that can acquire full Raman spectra (400-3200 cm-1) of biological samples within a few milliseconds. However, the CARS signal suffers from an undesired non-resonant background (NRB), deriving from four-wave-mixing processes, which distorts the peak line shapes and reduces the chemical contrast. Traditionally, the NRB is removed using numerical algorithms that require expert users and knowledge of the NRB spectral profile. Recently, deep-learning models proved to be powerful tools for unsupervised automation and acceleration of NRB removal. Here, we thoroughly review the existing NRB removal deep-learning models (SpecNet, VECTOR, LSTM, Bi-LSTM) and present two novel architectures. The first one combines convolutional layers with Gated Recurrent Units (CNN + GRU); the second one is a Generative Adversarial Network (GAN) that trains an encoder-decoder network and an adversarial convolutional neural network. We also introduce an improved training dataset, generalized on different BCARS experimental configurations. We compare the performances of all these networks on test and experimental data, using them in the pipeline for spectral unmixing of BCARS images. Our analyses show that CNN + GRU and VECTOR are the networks giving the highest accuracy, GAN is the one that predicts the highest number of true positive peaks in experimental data, whereas GAN and VECTOR are the most suitable ones for real-time processing of BCARS images.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Removing Non-Resonant Background from CARS spectra via Deep Learning
    Valensise, Carlo M.
    Giuseppi, Alessandro
    Vernuccio, Federico
    De la Cadena, Alejandro
    Cerullo, Giulio
    Polli, Dario
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,
  • [2] Removing non-resonant background from CARS spectra via deep learning
    Valensise, C. M.
    Giuseppi, A.
    Vernuccio, F.
    De la Cadena, A.
    Cerullo, G.
    Polli, D.
    APL PHOTONICS, 2020, 5 (06)
  • [3] Removing non-resonant background from broadband CARS using a physics-informed neural network
    Muddiman, Ryan
    O'Dwyer, Kevin
    Camp Jr, Charles H.
    Hennelly, Bryan
    ANALYTICAL METHODS, 2023, 15 (32) : 4032 - 4043
  • [4] CARS CONCENTRATION SENSITIVITY WITH AND WITHOUT NON-RESONANT BACKGROUND SUPPRESSION
    ECKBRETH, AC
    HALL, RJ
    COMBUSTION SCIENCE AND TECHNOLOGY, 1981, 25 (5-6) : 175 - 192
  • [5] Effect of non-resonant background on the extraction of Raman signals from CARS spectra using deep neural networks
    Junjuri, Rajendhar
    Saghi, Ali
    Lensu, Lasse
    Vartiainen, Erik M.
    RSC ADVANCES, 2022, 12 (44) : 28755 - 28766
  • [6] Removing non-resonant background of CARS signal with generative adversarial network
    Luo, Ziyi
    Xu, Xiangcong
    Lin, Danying
    Qu, Junle
    Lin, Fangrui
    Li, Jia
    APPLIED PHYSICS LETTERS, 2024, 124 (26)
  • [7] VECTOR: Very deep convolutional autoencoders for non-resonant background removal in broadband coherent anti-Stokes Raman scattering
    Wang, Zhengwei
    O' Dwyer, Kevin
    Muddiman, Ryan
    Ward, Tomas
    Camp, Charles H., Jr.
    Hennelly, Bryan M.
    JOURNAL OF RAMAN SPECTROSCOPY, 2022, 53 (06) : 1081 - 1093
  • [8] Investigating the effect of non-resonant background variation on the CARS data analysis of bacteria samples and classification using machine learning
    Junjuri, Rajendhar
    Meyer-Zedler, Tobias
    Popp, Juergen
    Bocklitz, Thomas
    OPTICS CONTINUUM, 2024, 3 (11): : 2244 - 2259
  • [9] Broadband subwavelength imaging using non-resonant metamaterials
    Zheng, Bin
    Zhang, Runren
    Zhou, Min
    Zhang, Weibin
    Lin, Shisheng
    Ni, Zhenhua
    Wang, Huaping
    Yu, Faxin
    Chen, Hongsheng
    APPLIED PHYSICS LETTERS, 2014, 104 (07)
  • [10] Smarter Contracts to Predict using Deep-Learning Algorithms
    Badruddoja, Syed
    Dantu, Ram
    He, Yanyan
    Thompson, Mark
    Salau, Abiola
    Upadhyay, Kritagya
    2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA), 2022, : 280 - 288