A time-space fractional parabolic type problem: weak, strong and classical solutions

被引:0
|
作者
Idczak, Dariusz [1 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, Banacha 22, PL-90382 Lodz, Poland
关键词
Riemann-Liouville derivative; Fractional Dirichlet-Laplace operator; Fractional abstract parabolic equation; Fractional diffusion; EQUATIONS;
D O I
10.1007/s13540-024-00363-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a generalized Riemann-Liouville type derivative of an abstract function of one variable and existence of a weak solution to an abstract fractional parabolic problem on [0, T] containing Riemann-Liouville derivative of a function of one variable and spectral fractional powers of a weak Dirichlet-Laplace operator to study existence of a strong solution to this problem. Our goal in this regard is to provide conditions that allow the transition from a weak to a strong solution. Next, we passage from the abstract problem to a classical one on [0,T]x Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,T]\times \varOmega $$\end{document}, containing partial (with respect to time t is an element of[0,T]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in [0,T]\,$$\end{document}) Riemann-Liouville derivative of the unknown real-valued function of two variables and fractional powers of a weak Dirichlet-Laplacian of this function (with respect to spatial variable x is an element of Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in \varOmega $$\end{document}). The most important in this regard is a theorem on the relation of the fractional derivatives of an abstract function of one variable and real-valued one of two variables.
引用
收藏
页码:93 / 116
页数:24
相关论文
共 50 条
  • [1] Weak solutions to the Cauchy problem of fractional time-space Keller-Segel equation
    Jiang, Zi-wen
    Wang, Li-zhen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14094 - 14113
  • [2] Final value problem governed by a class of time-space fractional pseudo-parabolic equations with weak nonlinearities
    Dinh Ke, Tran
    Bao Ngoc, Tran
    Huy Tuan, Nguyen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) : 5307 - 5328
  • [3] GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF WEAK SOLUTIONS FOR TIME-SPACE FRACTIONAL KIRCHHOFF-TYPE DIFFUSION EQUATIONS
    Fu, Yongqiang
    Zhang, Xiaoju
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (03): : 1301 - 1322
  • [4] Parallel algorithms for nonlinear time-space fractional parabolic PDEs
    Biala, T. A.
    Khaliq, A. Q. M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 135 - 154
  • [5] Identification of unknown sources in time-space fractional parabolic equation
    Lv, Xianli
    Feng, Xiufang
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2024, 22 (04)
  • [6] The quasi-reversibility method for an inverse source problem for time-space fractional parabolic equations
    Van Duc, Nguyen
    Van Thang, Nguyen
    Thanh, Nguyen Trung
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 344 : 102 - 130
  • [7] BACKWARD PROBLEM FOR A TIME-SPACE FRACTIONAL DIFFUSION EQUATION
    Jia, Junxiong
    Peng, Jigen
    Gao, Jinghuai
    Li, Yujiao
    INVERSE PROBLEMS AND IMAGING, 2018, 12 (03) : 773 - 799
  • [8] The quenching of solutions to time-space fractional Kawarada problems
    Padgett, Joshua L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (07) : 1583 - 1592
  • [9] Identifying an unknown source term in a time-space fractional parabolic equation
    Nguyen Van Thang
    Nguyen Van Duc
    Luong Duy Nhat Minh
    Nguyen Trung Thanh
    APPLIED NUMERICAL MATHEMATICS, 2021, 166 (166) : 313 - 332
  • [10] Blow-up and global existence of solutions for time-space fractional pseudo-parabolic equation
    Li, Yaning
    Yang, Yuting
    AIMS MATHEMATICS, 2023, 8 (08): : 17827 - 17859