Identifying genetic variants that influence the abundance of cell states in single-cell data

被引:1
|
作者
Rumker, Laurie [1 ,2 ,3 ,4 ,5 ,6 ]
Sakaue, Saori [1 ,2 ,3 ,4 ,6 ]
Reshef, Yakir [1 ,2 ,3 ,4 ,6 ]
Kang, Joyce B. [1 ,2 ,3 ,4 ,5 ,6 ]
Yazar, Seyhan [7 ,8 ]
Alquicira-Hernandez, Jose [1 ,2 ,3 ,4 ,6 ,7 ]
Valencia, Cristian [1 ,2 ,3 ,4 ,6 ]
Lagattuta, Kaitlyn A. [1 ,2 ,3 ,4 ,5 ,6 ]
Mah-Som, Annelise [2 ,3 ]
Nathan, Aparna [1 ,2 ,3 ,4 ,5 ,6 ]
Powell, Joseph E. [7 ,8 ]
Loh, Po-Ru [1 ,2 ,3 ,6 ]
Raychaudhuri, Soumya [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Brigham & Womens Hosp, Ctr Data Sci, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Dept Med, Div Genet, Boston, MA 02115 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] Brigham & Womens Hosp, Dept Med, Div Rheumatol Inflammat & Immun, Boston, MA 02115 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[6] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[7] Garvan Inst Med Res, Translat Genom, Sydney, NSW, Australia
[8] Univ New South Wales, UNSW Cellular Genom Futures Inst, Sydney, NSW, Australia
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
SYSTEMIC-LUPUS-ERYTHEMATOSUS; GENOME-WIDE ASSOCIATION; POLYGENIC SCORES; IMMUNE; LOCI; SUSCEPTIBILITY; PHENOTYPES; TRAITS; RISK;
D O I
10.1038/s41588-024-01909-1
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Disease risk alleles influence the composition of cells present in the body, but modeling genetic effects on the cell states revealed by single-cell profiling is difficult because variant-associated states may reflect diverse combinations of the profiled cell features that are challenging to predefine. We introduce Genotype-Neighborhood Associations (GeNA), a statistical tool to identify cell-state abundance quantitative trait loci (csaQTLs) in high-dimensional single-cell datasets. Instead of testing associations to predefined cell states, GeNA flexibly identifies the cell states whose abundance is most associated with genetic variants. In a genome-wide survey of single-cell RNA sequencing peripheral blood profiling from 969 individuals, GeNA identifies five independent loci associated with shifts in the relative abundance of immune cell states. For example, rs3003-T (P = 1.96 x 10-11) associates with increased abundance of natural killer cells expressing tumor necrosis factor response programs. This csaQTL colocalizes with increased risk for psoriasis, an autoimmune disease that responds to anti-tumor necrosis factor treatments. Flexibly characterizing csaQTLs for granular cell states may help illuminate how genetic background alters cellular composition to confer disease risk. GeNA identifies cell-state abundance quantitative trait loci (csaQTLs) in single-cell RNA sequencing data. Applied to OneK1K, GeNA identifies natural killer cell and myeloid csaQTLs and implicates interferon-alpha-related cell states using a polygenic risk score for systemic lupus erythematosus.
引用
收藏
页码:2068 / 2077
页数:23
相关论文
共 50 条
  • [1] Identifying cell states in single-cell RNA-seq data at statistically maximal resolution
    Grobecker, Pascal
    Sakoparnig, Thomas
    van Nimwegen, Erik
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (07)
  • [2] Subtle cell states resolved in single-cell data
    Caleb Lareau
    Nature Biotechnology, 2023, 41 : 1690 - 1691
  • [3] Subtle cell states resolved in single-cell data
    Lareau, Caleb
    NATURE BIOTECHNOLOGY, 2023, 41 (12) : 1690 - 1691
  • [4] Exploiting Single-Cell Quantitative Data to Map Genetic Variants Having Probabilistic Effects
    Chuffart, Florent
    Richard, Magali
    Jost, Daniel
    Burny, Claire
    Duplus-Bottin, Helene
    Ohya, Yoshikazu
    Yvert, Gael
    PLOS GENETICS, 2016, 12 (08):
  • [5] Topological and geometric analysis of cell states in single-cell transcriptomic data
    Huynh, Tram
    Cang, Zixuan
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [6] SIEVE: identifying robust single cell variable genes for single-cell RNA sequencing data
    Zhang, Yinan
    Xie, Xiaowei
    Wu, Peng
    Zhu, Ping
    BLOOD SCIENCE, 2021, 3 (02): : 35 - 39
  • [7] Identifying tumor clones in sparse single-cell mutation data
    Myers, Matthew A.
    Zaccaria, Simone
    Raphael, Benjamin J.
    BIOINFORMATICS, 2020, 36 : 186 - 193
  • [8] Identifying signaling genes in spatial single-cell expression data
    Li, Dongshunyi
    Ding, Jun
    Bar-Joseph, Ziv
    BIOINFORMATICS, 2021, 37 (07) : 968 - 975
  • [9] Identifying Cell Subpopulations and Their Genetic Drivers from Single-Cell RNA-Seq Data Using a Biclustering Approach
    Shi, Funan
    Huang, Haiyan
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2017, 24 (07) : 663 - 674
  • [10] A novel method for predicting cell abundance based on single-cell RNA-seq data
    Peng, Jiajie
    Han, Lu
    Shang, Xuequn
    BMC BIOINFORMATICS, 2021, 22 (SUPPL 9)